精英家教网 > 高中数学 > 题目详情
10.函数f(x)=$\left\{\begin{array}{l}{\frac{lnx}{1+x}(x>0)}\\{\frac{ln(-x)}{1-x}(x<0)}\end{array}\right.$的图象大致是(  )
A.B.C.D.

分析 利用函数的奇偶性,排除选项,通过函数的特殊值判断即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{\frac{lnx}{1+x}(x>0)}\\{\frac{ln(-x)}{1-x}(x<0)}\end{array}\right.$,满足f(-x)=f(x),
所以函数是偶函数,排除选项B,D;
当x∈(0,1)时,f(x)=$\frac{lnx}{1+x}$<0,排除A.
故选:C.

点评 本题考查函数的奇偶性以及特殊值的应用,函数的图象的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知a=5log33.4,b=5log33.6,c=($\frac{1}{5}$)log30.5,则a,b,c的大小关系是(  )
A.c>a>bB.b>a>cC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sinx+cosx,g(x)=2cosx,动直线x=t与f(x)和g(x)的图象分别交于A、B两点,则|AB|的取值范围是(  )
A.[0,1]B.[0,$\sqrt{2}$]C.[0,2]D.[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\vec a=({1,2}),\vec b=({-2,m})$,且$\vec a∥\vec b$,则$|{\vec b}|$为(  )
A.2$\sqrt{5}$B.$\sqrt{5}$C.3$\sqrt{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.现有A,B两门选修课供甲、乙、丙三人随机选择,每人必须且只能选其中一门,则甲乙两人都选A选修课的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义:$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,如$|{\begin{array}{l}1&2\\ 3&4\end{array}}|=1×4-2×3=-2$,则$|{\begin{array}{l}{\int_1^2{xdx}}&3\\ 1&2\end{array}}|$=(  )
A.0B.$\frac{3}{2}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.
(1)写出{an}的前3项,并猜想其通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若定义在(0,1)上的函数f(x)满足:f(x)>0且对任意的x∈(0,1),有f($\frac{2x}{1+{x}^{2}}$)=2f(x).则(  )
A.对任意的正数M,存在x∈(0,1),使f(x)≥M
B.存在正数M,对任意的x∈(0,1),使f(x)≤M
C.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)<f(x2
D.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)>f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在等差数列{an}中,前n项和为Sn,且S2011=-2011,a1012=3,则S2017等于(  )
A.1009B.-2017C.2017D.-1009

查看答案和解析>>

同步练习册答案