精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x2+x,x≤0
ln(x+1),x>0
,若|f(x)|≥ax恒成立,则a的取值范围是
 
考点:函数恒成立问题
专题:计算题,函数的性质及应用
分析:分x>0,x≤0两种情况进行讨论,x>0时可知要使不等式恒成立,须有a≤0;x≤0时,再分x=0,x<0两种情况讨论,分离参数a后化为函数最值可求,注意最后对a范围取交集.
解答: 解:(1)当x>0时,ln(x+1)>0,要使|f(x)|=ln(x+1)≥ax恒成立,则此时a≤0.
(2)当x≤0时,-x2+2x≤0,则|f(x)|=x2-x≥ax,
若x=0,则左边=右边,a取任意实数;
若x<0,|f(x)|=x2-x≥ax可化为a则有a≥x-1,此时须满足a≥-1.
综上可得,a的取值为[-1,0],
故答案为:[-1,0].
点评:本题考查函数恒成立问题,考查转化思想、分类讨论思想,考查学生分析解决问题的能力,恒成立问题常常转化为函数最值解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-
2
,0)
,短轴的端点到右焦点的距离为
3

(1)求椭圆C的方程;
(2)若直线l与圆4x2+4y2=3相切,且与椭圆C交于A,B两点,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,则当x∈(0,
1
2
),不等式f(x)+2<logax恒成立时,实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
2
x-1
的定义域是(-∞,1)∪[2,5),则其值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一圆形餐桌依次有A、B、C、D、E、F共有6个座位.现让3个大人和3个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

动点P到直线x+5=0的距离减去它到点M(4,0)的距离等于1,则P的轨迹方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

五名三中学生中午打篮球,将校服放在篮球架旁边,打完球回教室时由于时间太紧,只有两名同学拿对自己衣服的不同情况有
 
种.(具体数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

“|x-1|<2”是“(x-1)(x-3)<0”成立的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinωx+sin(ωx+
π
2
),ω>0且函数f(x)的最小正周期为2π.
(1)求f(x)的最大值及取得最大值的x值;
(2)若α∈(0,π)且f(α)=
3
4
,求cosα的值.

查看答案和解析>>

同步练习册答案