精英家教网 > 高中数学 > 题目详情
12.已知实数集R,集合A={x|x<0或x>2},集合B={y|y=$\sqrt{x-1}$},则(∁RA)∩B=(  )
A.{x|1<x<2}B.{x|1≤x≤2}C.{x|1≤x<2}D.{x|0≤x≤2}

分析 求出B中y的范围确定出B,找出A补集与B的交集即可.

解答 解:由B中y=$\sqrt{x-1}$≥0,得到B={y|y≥0},
∵实数集R,A={x|x<0或x>2},
∴∁RA={x|0≤x≤2},
则(∁RA)∩B={x|0≤x≤2},
故选:D.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{k}+\frac{{y}^{2}}{6+k}=1$的实轴长为4,则双曲线的渐近线方程为(  )
A.y=$±\frac{1}{2}x$B.y=±xC.y=±2xD.y=±$\sqrt{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.5名同学参加庆祝抗日胜利70周年文艺演出,要求是甲乙必须相邻,而丙丁不能相邻,不同的排队方法的种数是(  )
A.48B.24C.20D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.观察如图所示的算法框图
(1)说明该算法框图所表示的函数;
(2)用基本语句描述该算法框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若存在实数x0,使f(x0)=x0成立,则称x0为函数f(x)的不动点.己知函数f(x)=x3+ax2+x+b的图象关于点(p,0)对称,p>0,证明:“f(x)恰有一个零点”是“f(x)恰有一个不动点”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x-m)(ex-1)+x+1,m∈R.
(1)求f(x)在[0,1]上的最小值;
(2)若m为整数,当x>0时,f(x)>0恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x||x-1|≤a,a>0},B={x|x2-6x-7>0},且A∩B=∅,则a的取值范围是0<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:?x∈D,点(x,g(x)) 与点(x,h(x))都关于点(x,f(x))对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=3x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是(  )
A.(-∞,-$\sqrt{10}$]B.[-$\sqrt{10}$,$\sqrt{10}$]C.[-3,$\sqrt{10}$]D.[$\sqrt{10}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点F1与点F2是双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{10}$=1的左、右焦点,点P在直线l:x-$\sqrt{3}$y+8+2$\sqrt{3}$=0上,当∠F1PF2取最大值时,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的比值是(  )
A.$\sqrt{2}+1$B.$\sqrt{3}+1$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

同步练习册答案