精英家教网 > 高中数学 > 题目详情
3.若复数z=$\frac{1-i}{(1+i)^{2}}$+i(i为虚数单位),则|z|=(  )
A.$\frac{3}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 根据复数的四则运算进行化简,结合复数的模长公式进行计算即可.

解答 解:z=$\frac{1-i}{(1+i)^{2}}$+i=$\frac{1-i}{2i}$+i=$\frac{-i(1-i)}{-2{i}^{2}}$+i=$\frac{-1-i}{2}+i$=$-\frac{1}{2}$+$\frac{1}{2}$i,
则|z|=$\sqrt{(-\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$,
故选:B

点评 本题主要考查复数的模长的计算,根据复数的四种运算进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A、B、C所对的边分别是a、b、c,且满足csinA-$\sqrt{3}$acosC=0.
(1)求角C的大小;
(2)若c=2,求△ABC的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b],则把y=f(x),x∈D叫闭函数.
(1)求闭函数y=x3符合条件②的区间[a,b];
(2)判断函数f(x)=$\frac{3}{4}$x+$\frac{1}{x}$,(x>0)是否为闭函数?并说明理由;
(3)已知[a,b]是正整数,且定义在(1,m)的函数y=k-$\frac{9}{x+1}$是闭函数,求正整数m的最小值,及此时实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在半径为$\sqrt{3}$,圆心角为60°的扇形的弧上任取一点P,作扇形的内接矩形PNMQ,使点Q在OA上,点N,M在OB上,设矩形PNMQ的面积为y,∠POB=θ.
(Ⅰ)将y表示成θ的函数关系式,并写出定义域;
(Ⅱ)求矩形PNMQ的面积取得最大值时$\overrightarrow{OP}$•$\overrightarrow{ON}$的值;
(Ⅲ)求矩形PNMQ的面积y≥$\frac{\sqrt{6}-\sqrt{3}}{2}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax-3y的最大值为2,则a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α、β都是锐角,tanα=2,tanβ=3,那么α+β等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a,b,c分别是△ABC的内角A,B,C的对边,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面积为4$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用a代表红球,b代表蓝球,c代表黑球,由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)•(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”表示把红球和蓝球都取出来,以此类推,下列各式中,其展开式可用来表示从3个无区别的红球、3个无区别的蓝球、2个有区别的黑球中取出若干个球,且所有蓝球都取出或都不取出的所有取法的是①
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.矩形ABCD中,AB=1,BC=$\sqrt{3}$,将矩形沿对角线AC折起,使B点与P点重合,点P在平面ACD内的射影M正好在AD上.
(Ⅰ)求证CD⊥PA;
(Ⅱ)求二面角P-AC-D的余弦值.

查看答案和解析>>

同步练习册答案