精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{4\sqrt{1-(x-1)^{2}},0≤x≤2}\\{lg(x-2),x>2}\\{-sinx,x<0}\end{array}$则$f(f(-\frac{π}{6}))$=2$\sqrt{3}$,方程f(x)=1在x∈[-1,1]的解为1-$\frac{\sqrt{15}}{4}$.

分析 根据分段函数的表达式,即可得到结论.

解答 解:由分段函数得f(-$\frac{π}{6}$)=-sin(-$\frac{π}{6}$)=sin$\frac{π}{6}$=$\frac{1}{2}$,
则f($\frac{1}{2}$)=$4\sqrt{1-(\frac{1}{2}-1)^{2}}$=$4\sqrt{\frac{3}{4}}=\frac{4\sqrt{3}}{2}$=2$\sqrt{3}$,
若x∈[-1,0),
由f(x)=1得-sinx=1,即sinx=-1,此时无解,
若x∈[0,1],
由f(x)=1得4$\sqrt{1-(x-1)^{2}}$=1,即$\sqrt{1-(x-1)^{2}}$=$\frac{1}{4}$,
平方得(x-1)2=$\frac{15}{16}$,
解得x-1=±$\sqrt{\frac{15}{16}}$=±$\frac{\sqrt{15}}{4}$,
即x=1±$\frac{\sqrt{15}}{4}$,
此时x=1-$\frac{\sqrt{15}}{4}$,
故答案为:2$\sqrt{3}$,1-$\frac{\sqrt{15}}{4}$

点评 本题主要考查函数值的计算以及函数方程的求解,注意分类讨论进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1、F2,上下顶点分别为M,N,若椭圆的离心率为$\frac{\sqrt{2}}{2}$,短轴长为2.
(1)求椭圆E的方程;
(2)若直线MF2与椭圆交于另一点E,求△MF1E的面积;
(3)Q(m,n)是单位圆x2+y2=1上任一点,设P,A,B是椭圆E上异于顶点的三点且满足$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,求证:直线OA与OB的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线l:ax-by=1与不等式组$\left\{\begin{array}{l}y<1\\ 3x-y-2<0\\ 3x+y+2>0\end{array}\right.$表示的平面区域无公共点,则3a-2b的最小值为(  )
A.$\frac{7}{2}$B.$-\frac{11}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1的直线交椭圆于M,N两点,且|F2M|+|F2N|=5,|MN|=3,椭圆的离心率e=$\frac{1}{2}$.
(1)求椭圆的方程;
(2)过椭圆的右焦点F2且互相垂直的直线l1,l2分别与椭圆交于A,B和C,D,是否存在实数t,使得$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=t恒成立?若存在,求出实数t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)是奇函数(x∈R),则(  )
A.f(x)•sinx是奇函数B.f(x)+cosx是偶函数
C.f(x2)•sinx是奇函数D.f(x2)+sinx是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.汽车驾驶员发现前方有障碍物时会紧急刹车,这一过程中,由于人的反映需要时间,汽车在惯性的作用有一个刹车距离,设停车安全距离为S,驾驶员反映时间内汽车所行距离为S1,刹车距离为S2,则S=S1+S2.而S1与反映时间t有关,S1=10ln(t+1),S2与车速v有关,S2=bv2.某人刹车反映时间为$\sqrt{e}$-1秒,当车速为60km/h时,紧急刹车后滑行的距离为20米,若在限速100km/h的高速公路上,则该汽车的安全距离为61.(精确到米)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={-1,i},i为虚数单位,则下列选项正确的是(  )
A.$\frac{1}{i}$∈AB.$\frac{1-i}{1+i}$∈AC.i3∈AD.|-i|∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若函数f(x)=sinxcosx+a(sinx+cosx)的定义域为[0,$\frac{π}{2}$],若a≥-1,且函数f(x)的最大值比最小值大$\frac{\sqrt{2}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某流程图如图所示,现输入如下四个函数,则可以输出f(x)的是(  )
A.f(x)=-x2+1B.f(x)=x+$\frac{1}{x}$C.f(x)=lg$\frac{1+x}{1-x}$D.f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$

查看答案和解析>>

同步练习册答案