精英家教网 > 高中数学 > 题目详情
设函数f(x)=xa+1(a∈Q)的定义域为[-b,-a]∪(a,b],其中0<a<b,且f(x)在[a,b]上的最大值为6,最小值为3,则f(x)在[-b,-a]上的最大值与最小值的和是(  )
A、-5B、9
C、-5或9D、以上不对
考点:函数的最值及其几何意义
专题:综合题,函数的性质及应用
分析:先根据函数f(x)=xα+1得f(x)-1=xα,由题意知函数y=xα,或是奇函数或是偶函数,再根据奇(偶)函数的图象特征,利用函数y=xα在区间[a,b]上的最大值为6,最小值为3,根据图象的对称性可得y=xα在区间[-b,-a]上的最大值与最小值的情况,从而得出答案.
解答: 解:令g(x)=xα,定义域为[-b,-a]∪[a,b],则
∵函数f(x)=xα+1(α∈Q)在区间[a,b]上的最大值为6,最小值为3,
∴g(x)=xα在区间[a,b]上的最大值为5,最小值为2,
若g(x)=xα是偶函数,则g(x)=xα在区间[-b,-a]上的最大值为5,最小值为2,
∴函数f(x)=xα+1(α∈Q)在区间[-b,-a]上的最大值为6,最小值为3,最大值与最小值的和9;
若g(x)=xα是奇函数,则g(x)=xα在区间[-b,-a]上的最大值为-2,最小值为-5,
∴函数f(x)=xα+1(α∈Q)在区间[-b,-a]上的最大值为-1,最小值为-4,最大值与最小值的和-5;
∴f(x)在区间[-b,-a]上的最大值与最小值的和为-5或9.
故选:C.
点评:本题考查函数的最值,考查函数的奇偶性,考查分类讨论的数学思想,正确运用幂函数的性质是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
π
2
-
1
2
arccosx,它的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的周期函数y=f(x)的图象如图所示,则f(10π)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三次函数y=ax3-x在(-∞,+∞)内是减函数,则(  )
A、a≤0
B、a=1
C、a=2
D、a=
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在(0,+∞)内为增函数的是(  )
A、sin2x
B、x+sinx
C、x3-x
D、-x+ln(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

己知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则ab的值为(  )
A、
16
3
B、
4
3
3
C、
3
16
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

以双曲线
x2
64
-
y2
36
=1的右焦点为圆心,并与其渐近线相切的圆的标准方程是(  )
A、(x+10)2+y2=100
B、(x-10)2+y2=64
C、(x+10)2+y2=36
D、(x-10)2+y2=36

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y∈R,函数f(x)=(x+y)2+(
1
x
-y)2的最小值是(  )
A、4B、0C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x≤1
y≤3
λx-y+2λ-2≥0
表示的平面区域经过四个象限,则实数λ的取值范围是(  )
A、(-∞,2)
B、[-1,1]
C、[-1,2)
D、(1,+∞)

查看答案和解析>>

同步练习册答案