精英家教网 > 高中数学 > 题目详情
己知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则ab的值为(  )
A、
16
3
B、
4
3
3
C、
3
16
D、
3
4
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据抛物线的方程算出其焦点为(1,0),从而得出双曲线的右焦点为F(1,0),利用离心率的公式和a、b、c的平方关系建立方程组,解出a、b的值,即可得出结论.
解答: 解:∵抛物线方程为y2=4x,∴2p=4,得抛物线的焦点为(1,0).
∵双曲线的一个焦点与抛物y2=4x的焦点重合,
∴双曲线的右焦点为F(1,0)
∵双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)离心率为2,
∴a=
1
2

∴b=
3
2

∴ab=
3
4

故选:D.
点评:本题给出抛物线的焦点为双曲线右焦点,求双曲线的方程.着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|0≤x<1},B={x|1≤x≤3},函数f(x)=
3x,x∈A
6-2x,x∈B
,当x0∈A且f[f(x0)]∈A时,x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,SB⊥底面ABCD.底面ABCD为梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若点E是线段AD上的动点,则满足∠SEC=90°的点E的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
16
+
y2
8
=1(xy≠0)上的动点,F1、F2为椭圆的左、右焦点,O为坐标原点,若M是∠F1PF2的角平分线上的一点,且F1M⊥MP,则|
OM
|的取值范围是(  )
A、(0,3)
B、(2
3
,3)
C、(0,4)
D、(0,2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=xa+1(a∈Q)的定义域为[-b,-a]∪(a,b],其中0<a<b,且f(x)在[a,b]上的最大值为6,最小值为3,则f(x)在[-b,-a]上的最大值与最小值的和是(  )
A、-5B、9
C、-5或9D、以上不对

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式a2+4≥4a中等号成立的条件是(  )
A、a=±2B、a=2
C、a=-2D、a=4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|x+1|+2的最小值是(  )
A、0B、-1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x-1的单调减区间是(  )
A、(-∞,-1)
B、(-1,1)
C、(1,+∞)
D、(-∞,-1)和(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人下棋,两人下成和棋的概率是
1
2
,乙获胜的概率是
1
3
,则乙不输的概率是(  )
A、
1
6
B、
5
6
C、
2
3
D、
1
2

查看答案和解析>>

同步练习册答案