精英家教网 > 高中数学 > 题目详情

【题目】根据以往统计资料,某地车主购买甲种保险的概率为05,购买乙种保险但不购买甲种保险的概率为03.设各车主购买保险相互独立.

1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;

2X表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X的均值和方差.

【答案】10.8;(2E(X)20D(X)16.

【解析】

1)根据题意分别记事件,并得到各事件的概率,并根据事件间的关系,可得结果.

2)根据(1)的条件,得到“甲、乙两种保险都不购买”的概率,根据XB(10002),利用公式直接可得结果.

设事件A表示该地的1位车主购买甲种保险

事件B表示该地的1位车主购买乙种保险但不购买甲种保险

事件C表示该地的1位车主至少购买甲、乙两种保险中的1

事件D表示该地的1位车主甲、乙两种保险都不购买

1)由题意知P(A)05P(B)03CAB

P(C)P(AB)P(A)P(B)08

2DP(D)1P(C)10802

由题意知XB(10002)

所以均值E(X)100×0220,方差D(X)100×02×0816

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.

1)请问小明上学的路线有多少种不同可能?

2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;

3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】41届世界博览会于201051日至1031日,在中国上海举行,气势磅礴的中国馆——“东方之冠令人印象深刻,该馆以东方之冠,鼎盛中华,天下粮仓,富庶百姓为设计理念,代表中国文化的精神与气质.其形如冠盖,层叠出挑,制似斗拱.它有四根高33.3米的方柱,托起斗状的主体建筑,总高度为60.3米,上方的斗冠类似一个倒置的正四棱台,上底面边长是139.4米,下底面边长是69.9米,则斗冠的侧面与上底面的夹角约为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,当时,函数有极值.

1)求函数的极大值;

2)若关于的方程有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数,其中e为自然对数的底数.

1)求证:有且只有一个极小值点;

2)若不等式上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数R上的奇函数,当时,,则函数上的所有零点之和为(

A.0B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是( )

A. ,则为实数的充要条件是为共轭复数;

B. “直线与曲线C相切”是“直线与曲线C只有一个公共点”的充分不必要条件;

C. “若两直线,则它们的斜率之积等于”的逆命题;

D. 是R上的可导函数,“若的极值点,则”的否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的两焦点与短轴两端点围成面积为12的正方形.

(1)求椭圆C的标准方程;

(2)我们称圆心在椭圆上运动,半径为的圆是椭圆的“卫星圆”.过原点O作椭圆C的“卫星圆”的两条切线,分别交椭圆CAB两点,若直线的斜率为,当时,求此时“卫星圆”的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象为C,如下结论中正确的是(

①图象C关于直线对称;②函数在区间内是增函数;

③图象C关于点对称;④由的图象向右平移个单位长度可以得到图象C

A.①③B.②③C.①②③D.①②

查看答案和解析>>

同步练习册答案