精英家教网 > 高中数学 > 题目详情
6.已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,2Sn=anan+1-6,问数列{an}能否为等差数列?若能,求出c满足的条件;若不能,请说明理由.

分析 由题意可得a1=c可知a2=2+$\frac{6}{c}$,又可得n≥2时an+1-an-1=2,要使{an}为等差数列需a2-a1=1,解关于c的方程验证可得.

解答 解:由题意可得当n=1时,2a1=a1a2-6,
由a1=c可知a2=2+$\frac{6}{c}$;
当n≥2时,由2Sn=anan+1-6可得2Sn-1=an-1an-6,
两式相减可得2an=an(an+1-an-1).∴an+1-an-1=2
要使{an}为等差数列需a2-a1=1,即2+$\frac{6}{c}$-c=1
解得c=3或c=-2,
当c=-2时,a3=0,不合题意,舍去,
∴当且仅当c=3时,数列{an}为等差数列.

点评 本题考查等差数列的求和公式,涉及分类讨论的思想,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.数列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$,(n≥2,n∈N),则a11的值为(  )
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.A,B是半径为2的圆O上的两点,M是弦AB上的动点,若△AOB为直角三角形,则$\overrightarrow{OM}$•$\overrightarrow{AM}$的最小值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在曲线y=$\frac{4}{{x}^{2}}$上求一点P,使得曲线在该点处的切线的倾斜角为135°,则P点坐标为(2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,O是边长为2的等边△ABC的中心,动点E在边AC上运动,F在边AB及BC上运动,则$\overrightarrow{OB}$•$\overrightarrow{EF}$的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\frac{2+\frac{1}{ta{n}^{2}θ}}{1+sinθ}$=1,求证:(1+sin θ )(2+cosθ )=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设数列{an}的前n项和是Sn,数列{Sn}的前n项乘积为Tn,且Sn+Tn=1,则数列{$\frac{1}{{a}_{n}}$}中最接近2015的项是(  )
A.第43项B.第44项C.第45项D.第46项

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=2px(p>0)焦点为F,抛物线上横坐标为$\frac{1}{2}$的点到抛物线顶点的距离与其到准线的距离相等.
(Ⅰ)求抛物线的方程;
(Ⅱ)设过点P(6,0)的直线l与抛物线交于A,B两点,若以AB为直径的圆过点F,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=4x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,点A,B是两曲线的交点,O为坐标原点,若($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AF}$=0,则双曲线的实轴长为(  )
A.$\sqrt{2}$+2B.$\sqrt{2}$-1C.2$\sqrt{2}$-1D.2$\sqrt{2}$-2

查看答案和解析>>

同步练习册答案