精英家教网 > 高中数学 > 题目详情
13.数列{an}满足递推式:an+1=3an+3n+1+λ•2n,若数列{$\frac{a_n}{3^n}$-($\frac{2}{3}$)n}为等差数列,则实数λ=-1.

分析 将递推式an+1=3an+3n+1+λ2n两边同除以3n+1,整理得$\frac{an+1}{3n+1}$=$\frac{an}{3n}$+1+$\frac{λ}{3}$•($\frac{2}{3}$)n,可得$\frac{an+1}{3n+1}$-($\frac{2}{3}$)n+1=$\frac{an}{3n}$+$\frac{λ-2}{3}$•($\frac{2}{3}$)n+1,利用数列{$\frac{a_n}{3^n}$-($\frac{2}{3}$)n}为等差数列,即可得出.

解答 解:将递推式an+1=3an+3n+1+λ2n两边同除以3n+1,整理得$\frac{an+1}{3n+1}$=$\frac{an}{3n}$+1+$\frac{λ}{3}$•($\frac{2}{3}$)n
两边同减($\frac{2}{3}$)n+1,整理得$\frac{an+1}{3n+1}$-($\frac{2}{3}$)n+1=$\frac{an}{3n}$+$\frac{λ-2}{3}$•($\frac{2}{3}$)n+1,
由于{$\frac{an}{3n}$-($\frac{2}{3}$)n}为等差数列,∴$\frac{λ-2}{3}$=-1,解得λ=-1.
故答案为:-1.

点评 本题考查了数列的递推关系、等差数列的定义,考查了转化能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知不等式ax2+2x+c>0的解集为{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}.
(Ⅰ)求a、c的值;
(Ⅱ)解不等式cx2-2x+a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.直角坐标与极坐标的互换
(1)将点M的极坐标(5,$\frac{2π}{3}$)化为直角坐标;
(2)将点M的直角坐标(-$\sqrt{3}$,-1)化为极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow b$=(cosx,2cosx),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+m,(m∈R),且当x∈[0,$\frac{π}{2}}$]时,f(x)的最小值为2.
(1)求f(x)的单调递增区间;
(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$,再把所得的图象向右平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,求函数g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数g(x)=$\left\{\begin{array}{l}{{e}^{x-1},0≤x<1}\\{g(x-1),x≥1}\end{array}\right.$,则函数f(x)=g(x)-$\frac{x}{8}$的零点个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系内,曲线C:y2=xy 表示的点的轨迹为(  )
A.原点B.一条直线C.一点和一条直线D.两条相交直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如表:
女性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(Ⅰ)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列联表,并回答是否有95%的把握认为性别和对手机的“认可”有关;
女性用户男性用户合计
“认可”手机
“不认可”手机
合计
P(X2≥k)0.050.01
k3.8416.635
X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知点A(1,0),B是单位圆x2+y2=1上一动点,且点B是线段AC的中点.
(1)若点C在y轴的正半轴上,求$\overrightarrow{OA}$•$\overrightarrow{OB}$;
(2)若∠AOB=$\frac{2π}{3}$,求点A到直线OC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2)在抛物线上,直线l与抛物线y2=4x相交于不同的A、B两点
(1)求该抛物线方程;
(2)若直线l过抛物线的焦点,且线段AB中点的横坐标为2,求弦AB的长;
(3)若$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4,证明直线l必过一定点,并求出该定点.

查看答案和解析>>

同步练习册答案