精英家教网 > 高中数学 > 题目详情
5.某手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如表:
女性用户:
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户
分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(Ⅰ)如果评分不低于70分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列2×2列联表,并回答是否有95%的把握认为性别和对手机的“认可”有关;
女性用户男性用户合计
“认可”手机
“不认可”手机
合计
P(X2≥k)0.050.01
k3.8416.635
X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

分析 (Ⅰ)利用数据直接填写联列表即可,求出X2,即可回答是否有95%的把握认为性别和对手机的“认可”有关;
(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于8(0分)有6人,其中评分小于9(0分)的人数为4,从6人人任取3人,记评分小于9(0分)的人数为X,则X取值为1,2,3,求出相应概率,得到X的分布列,然后求解期望.

解答 解:(Ⅰ)2×2列联表如下图:

女性用户男性用户合计
“认可”手机140180320
“不认可”手机60120180
合计200300500
…(3分)
${Χ^2}=\frac{{500{{(140×120-180×60)}^2}}}{200×300×320×180}≈5.208>3.841$,
所以有95%的把握认为性别和对手机的“认可”有关.…(6分)
(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于8(0分)有6人,其中评分小于9(0分)的人数为4,从6人人任取3人,记评分小于9(0分)的人数为X,则X取值为1,2,3,$P(X=1)=\frac{C_4^1C_2^2}{C_6^3}=\frac{4}{20}=\frac{1}{5}$;$P(X=2)=\frac{C_4^2C_2^1}{C_6^3}=\frac{12}{20}=\frac{3}{5}$;$P(X=3)=\frac{C_4^3C_2^2}{C_6^3}=\frac{4}{20}=\frac{1}{5}$.
…(9分)
所以X的分布列为
X123
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
$EX=\frac{4}{6}×3=2$或$EX=\frac{1}{5}+\frac{6}{5}+\frac{3}{5}=2$.…(12分)

点评 本题考查独立检验以及离散性随机变量的分布列以及期望的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC的内角B满足2cos2B-8cosB+5=0,若$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{CA}$=$\vec b$且$\overrightarrow a,\vec b$满足:$\overrightarrow{a}$•$\overrightarrow{b}$=-9,$|{\overrightarrow a}|=3,|{\vec b}$|=5,θ为$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.
(Ⅰ)求∠B;
(Ⅱ)求sin(B+C).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知函数f(x)=x2(x-a),若f(x)在(2,3)上单调递减,求实数a的取值范围;
(2)已知函数f(x)=x3-3ax2+2a2x+1在[0,2]上是单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}满足递推式:an+1=3an+3n+1+λ•2n,若数列{$\frac{a_n}{3^n}$-($\frac{2}{3}$)n}为等差数列,则实数λ=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过1小时,时针旋转的角是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校从高一年级学生中随机抽取40名学生,将他们的期末考试物理成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.
(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(2)利用这个频率分布直方图求40名学生物理成绩的中位数;
(3)若该校高一年级共有学生840人,试估计该校高一年级期中考试物理成绩不低于60分的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.m为何值时,关于x的方程8x2-(m-1)x+m-7=0的两根:
(Ⅰ)都大于1;
(Ⅱ)一根大于2,一根小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|ln(x-1)|,若实数a,b(a<b)满足f(a)=f(b),则-a+5b的取值范围为(  )
A.(5,8)B.(8,9)C.(5,9)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知PA⊥平面ABCD,PA=AB=AD=$\frac{1}{2}$CD=1,∠BAD=∠ADC=90°.
(1)求直线PD与平面PAB所成角的大小;
(2)求点B到平面PCD的距离.

查看答案和解析>>

同步练习册答案