精英家教网 > 高中数学 > 题目详情
4.sin6α+cos6α+3sin2αcos2α=(  )
A.0B.1C.-1D.2

分析 利用乘法公式、同角三角函数基本关系式即可得出.

解答 解:原式=(sin2α+cos2α)[(sin2α+cos2α)2-3sin2αcos2α]+3sin2αcos2α
=1-3sin2αcos2α+3sin2αcos2α
=1.
故选:B.

点评 本题考查了乘法公式、同角三角函数基本关系式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\frac{1}{3}{x^3}+{x^2}$+ax,a∈R.
(Ⅰ)若f(x)在区间$(-∞,-\frac{3}{2})$上存在单调递减区间,求a的取值范围;
(Ⅱ)当-4<a<0时,f(x)在区间[0,3]上的最大值为15,求f(x)在[0,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某公司新招聘5名员工,分给下属的甲、乙两个部门,其中两名英语翻译人员不能分给同一部门;另三名电脑编程人员不能都分给同一个部门,则不同的分配方案种数是(  )
A.6B.12C.24D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若M是抛物线y2=4x上一点,且在x轴上方,F是抛物线的焦点,直线FM的倾斜角为60°,则|FM|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知一个口袋有2个红球、3个黄球,4个白球,其中同色球不加以区分,将这九个球按白,红,黄的顺序排成一列,则不同的方法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,A,B,C是双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是(  )
A.$\frac{\sqrt{10}}{2}$B.$\sqrt{10}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求中点在原点,渐近线为4x±3y=0,且经过点R(-3,2$\sqrt{3}$)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx+ln(2-x)+ax(a>0),当a=1时,去求f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$α∈(\frac{π}{2},\frac{3π}{2}),tan(α-\frac{π}{4})=-7$,则sinα的值等于(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

同步练习册答案