精英家教网 > 高中数学 > 题目详情
求y=-x2+2ax在x∈(1,2)的值域.
考点:二次函数在闭区间上的最值
专题:计算题,函数的性质及应用
分析:由于y=f(x)=-x2+2ax的对称轴方程为x=a,分对称轴在区间的左侧、对称轴在区间中间但靠近左侧、对称轴在区间中间但靠近右侧、对称轴在区间右侧四种情况,分别利用二次函数的性质求得函数的值域.
解答: 解:由于y=f(x)=-x2+2ax的对称轴方程为x=a,
①当a≤1时,函数y在区间(1,2)上是减函数,
故函数的值域为(-1+a,-4+4a);
②当1<a≤1.5时,最大值f(a)=a2,又f(2)=-4+4a,
故函数的值域为(-4+4a,a2];
③当1.5<a≤2时,最大值f(a)=a2,又f(1)=-1+a,
故函数的值域为(-1+a,a2];
④当a>2时,函数y在区间(1,2)上是增函数,
故值域为(-4+4,-1+a).
点评:本题主要考查求二次函数在闭区间上的最值,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数
-6+ai
1+2i
是纯虚数(i是虚数单位),则实数a的值为(  )
A、6B、-6C、3D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+x2+bx(其中常数a,b∈R)
(Ⅰ)若a=1,b=1时,求函数f(x)的单调区间;
(Ⅱ)若g(x)=f(x)+f′(x)是奇函数,讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
4
x
-(4a+
1
a
)lnx,g(x)=a-
4
a
-(4x+
1
x
)lna(x>0),其中a是正常数.若f′(1)=g′(
1
2
),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的椭圆的标准方程:
(1)长轴长为12,e=
1
2

(2)经过点P(8,0)和Q(0,6).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=3,f(2)=12;
(1)求a,b,c的值;
(2)若(a-1)3+2a-4=0,(b-1)3+2b=0,求a+b的值;
(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在(0,1)上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=3,an+1=an+
1
n2+3n+2
,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个正方形的四个顶点都在三角形的三条边上,称该正方形是该三角形的内接正方形,若锐角△ABC的面积为S,求其内接正方形面积的最大值,并求此时正方形的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=3+i,z2=1+2i,则复数
.
z1
=
 
z1
z2
=
 

查看答案和解析>>

同步练习册答案