精英家教网 > 高中数学 > 题目详情
9.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频数分布及支持“生育二胎”人数如下表:
年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
频数510151055
支持“生育二胎”4512821
(I)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
年龄不低于45岁的人数年龄低于45岁的人数合计
支持a=c=
不支持b=d=
合计
(Ⅱ)若对年龄在[5,15]的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:P(K2≥3.841)=0.050,P(k2≥6.635)=0.010,P(K2≥10.828)=0.001.

分析 (Ⅰ)根据题意填写2×2列联表,由表中数据计算观测值,对照临界值即可得出结论;
(Ⅱ)用列举法求出基本事件数,计算所求的概率值.

解答 解:(Ⅰ)根据题意填写2×2列联表如下;

年龄不低于45岁的人数年龄低于45岁的人数 合计
支持a=3c=29  32
不支持b=7d=11  18
合  计1040  50
…(2分)
根据表中数据,计算${K^2}=\frac{{50×{{(3×11-7×29)}^2}}}{{({3+7})({29+11})({3+29})({7+11})}}≈6.27$<6.635;…(4分)
所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;
…(5分)
(Ⅱ)年龄在[5,15)中支持“生育二胎”的4人分别为a,b,c,d,
不支持“生育二胎”的人记为M,…(6分)
则从年龄在[5,15)的被调查人中随机选取两人所有可能的结果有:
(a,b),(a,c),(a,d),(a,M),(b,c),(b,d),(b,M),
(c,d),(c,M),(d,M)共10种;…(8分)
设“恰好这两人都支持“生育二胎””为事件A,…(9分)
则事件A所有可能的结果有:
(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6种,
∴$P(A)=\frac{6}{10}=\frac{3}{5}$;…(11分)
所以对年龄在[5,15)的被调查人中随机选取两人进行调查时,
恰好这两人都支持“生育二胎”的概率为$\frac{3}{5}$.…(12分)

点评 本题考查了独立性检验与列举法求古典概型的概率问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图,A、B分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$两渐近线上的点,A、B在y轴上的射影分别为A1、B1,M、N分别是A1A、B1B、的中点,若AB中点在双曲线上,且$\overrightarrow{OM}•\overrightarrow{ON}≥-{a^2}$,则双曲线的离心率的取值范围为(  )
A.$({1,\frac{3}{2}}]$B.$[\frac{3}{2},+∞)$C.$(1,\frac{{\sqrt{5}}}{2}]$D.$[\frac{{\sqrt{5}}}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在Rt△ABC中,两直角边分别为a,b,斜边为c,则由勾股定理知c2=b2+a2,则在四面体P-ABC中,PA⊥PB,PA⊥PC,PB⊥PC,类比勾股定理,类似的结论为(  )
A.S△PBC2=S△PAB2+S△PAC2B.S△ABC2=S△PAB2+S△PAC2
C.S△ABC2=S△PAB2+S△PAC2+S△PBC2D.S△PBC2=S△PAB2+S△PAC2+S△ABC2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}+({1-a})x$,a∈R.
(1)讨论f(x)的单调性;
(2)当a=-2时,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:${x_1}+{x_2}>\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.执行如下程序框图,则输出的n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\frac{1-x}{{1+{x^2}}}{e^x}$,若f(x1)=f(x2),且x1<x2,关于下列命题:(1)f(x1)>f(-x2);(2)f(x2)>f(-x1);(3)f(x1)>f(-x1);(4)f(x2)>f(-x2).正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项等比数列{an}的前n项和为Sn,且S8-2S4=5,则a9+a10+a11+a12的最小值为(  )
A.10B.15C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列各式:
1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,则1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+…+9}$=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等比数列{an}中,a2,a6是方程x2-34x+64=0的两根,则a4等于(  )
A.8B.-8C.±8D.以上都不对

查看答案和解析>>

同步练习册答案