精英家教网 > 高中数学 > 题目详情
4.根据如样本数据:
x24568
y2040607080
得到的回归直线方程为$\widehat{y}$=10.5x+a,据此模型来预测当x=20时,y的值为(  )
A.210B.210.5C.211.5D.212.5

分析 根据所给的表格求出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法求出a的值,再计算x=20时y的值即可.

解答 解:由表中数据可得$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline{y}$=$\frac{1}{5}$×(20+40+60+70+80)=54,
∵($\overline{x}$,$\overline{y}$)在回归直线方程$\widehat{y}$=10.5x+a上,
∴54=10.5×5+a,
解得a=1.5,
∴回归直线方程为$\widehat{y}$=10.5x+1.5;
当x=20时,$\widehat{y}$=10.5×20+1.5=211.5.
故选:C.

点评 本题考查了线性回归方程的应用问题,解题时应利用回归直线过样本中心点,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求证:a,b,c为正实数的充要条件是a+b+c>0,且ab+bc+ca>0和abc>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知四边形ABCD满足|AB|=|AD|,|CD|=$\sqrt{3}$且∠BAD=60°,$\overrightarrow{AC}$-$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AD}$,那么四边形ABCD的面积为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,满足(2b-c)cosA=acosC.
(Ⅰ)求角A的大小
(Ⅱ)若a=3,求△ABC的周长最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\frac{2i-1}{1+ai}\;(a∈R)$是纯虚数,则a=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在各项均为正数的等比数列{an}中,a1=1,a2+a3=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=$\left\{\begin{array}{l}{2n-1,n为奇数}\\{{a}_{n},n为偶数}\end{array}\right.$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在等比数列{an}中,a1+2a2=1,a${\;}_{3}^{2}$=2a2a5
(1)求数列{an}的通项公式;
(2)设bn=log2a1+log2a2+…+log2an,求数列{$\frac{1}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=s-ke-x的图象在x=0处的切线方程为y=x.
(1)求s,k的值;
(2)若$g(x)=mlnx-{e^{-x}}+\frac{1}{2}{x^2}-(m+1)x+1(m>0)$,求函数h(x)=g(x)-f(x)的单调区间;
(3)若正项数列{an}满足${a_1}=\frac{1}{2}$,${a_n}={e^{{a_{n+1}}}}f({a_n})$,证明:数列{an}是递减数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x)的图象是折线ABCDE,如图,其中A(1,2),B(2,1),C(3,2),D(4,1),E(5,2),若直线y=kx+b与y=f(x)的图象恰有四个不同的公共点,则k的取值范围是(  )
A.(-1,0)∪(0,1)B.$(-\frac{1}{3},\frac{1}{3})$C.(0,1]D.$[{0.\frac{1}{3}}]$

查看答案和解析>>

同步练习册答案