精英家教网 > 高中数学 > 题目详情
6.如图,长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=3;
(1)求四棱锥A1-ABCD的体积;
(2)求异面直线A1C与DD1所成角的大小.

分析 (1)四棱锥A1-ABCD的体积${V}_{{A}_{1}-ABCD}$=$\frac{1}{3}{S}_{矩形ABCD}×A{A}_{1}$,由此能求出结果.
(2)由DD1∥CC1,知∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),由此能求出异面直线A1C与DD1所成角的大小.

解答 解:(1)∵长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=3,
∴四棱锥A1-ABCD的体积:
${V}_{{A}_{1}-ABCD}$=$\frac{1}{3}{S}_{矩形ABCD}×A{A}_{1}$=$\frac{1}{3}×AB×AD×A{A}_{1}$=$\frac{1}{3}×2×2×3$=4.
(2)∵DD1∥CC1,∴∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),
∵tan∠A1CC1=$\frac{{A}_{1}{C}_{1}}{C{C}_{1}}$=$\frac{\sqrt{{2}^{2}+{2}^{2}}}{3}$=$\frac{2\sqrt{2}}{3}$,
∴$∠{A}_{1}C{C}_{1}^{\;}$=$arctan\frac{{2\sqrt{2}}}{3}$.
∴异面直线A1C与DD1所成角的大小为$arctan\frac{{2\sqrt{2}}}{3}$;

点评 本题考查三棱锥的体积的求法,考查异面直线所成角的求法,是中档题,解题时要认真审题,注空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在△ABC中,$\overrightarrow{BF}=2\overrightarrow{FC}$,$\overrightarrow{AM}=\overrightarrow{MF}=\overrightarrow{FN}$.
(1)用$\overrightarrow{AB}$,$\overrightarrow{AC}$表示$\overrightarrow{AF}$;
(2)若$\overrightarrow{AB}⊥\overrightarrow{AC}$,$|{\overrightarrow{AB}}|=\sqrt{2}|{\overrightarrow{AC}}|$,求证:$\overrightarrow{AN}⊥\overrightarrow{BC}$;
(3)若$\overrightarrow{BM}•\overrightarrow{BC}=|{\overrightarrow{MF}}|=1$,求$\overrightarrow{BA}•\overrightarrow{BN}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)0$\sqrt{2}$-$\sqrt{2}$0
(Ⅰ)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A为锐角△ABC的内角,且 sinA-2cosA=a(a∈R).
(Ⅰ)若a=-1,求tanA的值;
(Ⅱ)若a<0,且函数f(x)=(sinA)•x2-(2cosA)•x+1在区间[1,2]上是增函数,求sin2A-sinA•cosA的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,2Sn=3an-2n(n∈N+).
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn=an+2n+1,求证:$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{2}-\frac{1}{{2}^{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,且PA=AB=AC=2,$BC=2\sqrt{2}$.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)如果M是棱PD上的点,N是棱AB上一点,AN=2NB,且三棱锥N-BMC的体积为$\frac{1}{6}$,求$\frac{PM}{MD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在三棱锥A-BCD中,A在平面BCD内的投影恰为BD的中点,CD⊥BD,AD⊥AB,延长DA至P,使DA=AP.
(1)求证:PB⊥平面BCD;
(2)若$BD=CD=\sqrt{2}$,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将y=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的图象向右平移φ(0<φ<π)个单位得到函数y=2sinx(sinx-cosx)-1的图象,则φ=$\frac{13π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.f(x)是定义在R上函数,满足f(x)=f(-x)且x≥0时,f(x)=x3,若对任意的x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,则实数t的取值范围是t≤-3或t≥1或t=0.

查看答案和解析>>

同步练习册答案