精英家教网 > 高中数学 > 题目详情
如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB中点.
(Ⅰ)求证:BE∥平面PDF
(Ⅱ)求PD与平面PAB所成角的正弦值.
考点:直线与平面所成的角,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(Ⅰ)取PD的中点M,由三角形的中位线定理,结合已知条件,易证明四边形MEBF是平行四边形,且BE∥MF,结合线面平行的判定定理,即可得到BE∥平面PDF.
(Ⅱ)以A为原点,垂直于AD、AP的方向为x轴,AD,AP的方向为y轴、z轴,建立空间直角坐标系,利用向量法能求出PD与平面PAB所成角的正弦值.
解答: (Ⅰ)证明:取PD的中点M,
∵E是PC的中点,
∴ME是△PCD的中位线,
∴ME∥FB,
∴四边形MEBF是平行四边形,∴BE∥MF,
∵BE?平面PDF,MF?平面PDF,
∴BE∥平面PDF.
(Ⅱ)解:以A为原点,垂直于AD、AP的方向为x轴,AD,AP的方向为y轴、z轴,
建立空间直角坐标系,
则P(0,0,2),D(0,2,0),A(0,0,0),B(
3
,1,0
),
PD
=(0,2,-2),
PA
=(0,0,-2),
PB
=(
3
,1,-2)

设平面PAB的法向量
n
=(x,y,z),
n
PA
=-2z=0
n
PB
=
3
x+y-2z=0

取x=
3
,得
n
=(
3
,-3,0
),
设PD与平面PAB所成角为θ,
则sinθ=|cos<
n
PD
>|=|
2×(-3)
4+4
3+9
|=
6
4

∴PD与平面PAB所成角的正弦值为
6
4
点评:本题考查直线与平面平行的证明,考查直线与平面所成角的求法,是中档题,解题时要注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(
π
2
,-2).
(1)求φ的值;
(2)若f(
α
2
)=
6
5
,-
π
2
<α<0,求sin(2α-
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数满足f(x+1)-f(x)=2x,且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义域为R的偶函数,当x≥0时,f(x)=x(2-x).
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象(不需列表);
(3)讨论方程f(x)-k=0的根的情况.(只需写出结果,不要解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1),B(2,3),C(3,2),D(x,y)
(1)若
DA
+
DB
+
DC
=
0
,求|
OD
|;
(2)设
OD
=m
AB
+n
AC
(m,n∈R),用x,y表示m-n.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=xk+2bx+c(k∈N*,b,c∈R),g(x)=ax(a>0,a≠1).
(1)若2b+c=1,且f(1)=g(
1
2
),求a的值;
(2)若k=2,b≥0记函数f(x)在[-1,1]上的最大值为M,最小值为N,当M-N=4时,求b的取值范围;
(3)判断是否存在大于1的实数a,使得对任意实数x1∈[a,2a],都有x2∈[a,a2]满足g(x1)•g(x2)=p,且满足该等式的p的值唯一,若存在,求出所有符合条件的a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:
(1)f(x)+f(y)+1≥f(x+y)≥f(x)+f(y);
(2)f(0)≥f(x),x∈[0,1);
(3)-f(-1)=f(1)=1
(Ⅰ)求f(0);
(Ⅱ)当x∈[0,1)时,求证:f(x)=0
(Ⅲ)若集合M={(x,y)|f(x)f(y)=7},求集合M在平面直角坐标系中对应的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的矩形ABCD中,BC=2AB,M是AD的中点,以BM为折痕将△ABM向上折起,使得平面ABM⊥平面BCDM.
(1)证明:AB⊥平面AMC;
(2)已知AB=2,求四棱锥A-BCDM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知两正数a,b满足a+b=1.求
2a+1
+
2b+1
的最大值;
(2)设a>0,b>0,a+b+ab=24,求a+b的最小值.

查看答案和解析>>

同步练习册答案