精英家教网 > 高中数学 > 题目详情
如图所示的矩形ABCD中,BC=2AB,M是AD的中点,以BM为折痕将△ABM向上折起,使得平面ABM⊥平面BCDM.
(1)证明:AB⊥平面AMC;
(2)已知AB=2,求四棱锥A-BCDM的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面垂直的判定
专题:计算题,证明题,空间位置关系与距离
分析:(1)推CM⊥AB,AB⊥AM,证明AB⊥平面AMC;(2)梯形BCDM中解面积,高为AO,从而求出体积.
解答: 解:(1)证明:设AB=a,BC=2a,由题意BM=CM=
2
a;
则BM2+CM2=BC2,即BM⊥CM.
而平面ABM⊥平面BCDM,BM是平面ABM与平面BCDM的交线,
∴CM⊥平面ABM,AB⊆平面ABM
∴CM⊥AB,
∴CM⊥AB,又∵AB⊥AM
∴AB⊥平面AMC.
(2)在△BCM中,AB=AM=2,O为BM的中点
∴AO⊥BM,
平面ABM⊥平面BCDM,AO⊥平面BCDM,AO=
2

在梯形BCDM中,DM=CD=2,BC=4,S=
1
2
•6•2=6

VA-BCDM=
1
3
×S×AO
=
1
3
×6×
2
=2
2
点评:本题考查了线面垂直关系的证明,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列
1
1×2
1
2×3
1
3×4
,…
1
n(n+1)
,…,计算S1,S2,S3,由此推测计算Sn的公式,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB中点.
(Ⅰ)求证:BE∥平面PDF
(Ⅱ)求PD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x).
(1)求函数F(x)的单调区间;
(2)若以函数y=F(x)(x∈(0,3])图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)是否存在实数m,使得当x∈(0,3]时函数y=g(
2a
x+1
)+m-1的图象与函数y=f(x+1)的图象恰有二个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
1
5
,其中θ是△ABC的一个内角.
(1)求sinθcosθ的值;
(2)判断△ABC是锐角三角形还是钝角三角形;
(3)求sinθ-cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+x,若不等式f(-x)+f(x)≤2|x|的解集为C.
(1)求集合C;
(2)记f(x)在C上的值域为A,若g(x)=x3-3tx+
t
2
,x∈[0,1]的值域为B,且A⊆B,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+ax(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若x•f(x)≤a对任意x≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且满足f(x)=f(x+2),当0≤x≤1时,f(x)=x2,判断函数f(x)是否为周期函数,求f(5.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量Y的分布列为P(Y=k)=
k
15
(k=1,2,3,4,5),则P(
1
2
<Y<
5
2
)等于
 

查看答案和解析>>

同步练习册答案