精英家教网 > 高中数学 > 题目详情
9.设P(x0,y0)是函数f(x)图象上任意一点,且$y_0^2≥x_0^2$,则f(x)的解析式可以是(  )
A.$f(x)=x-\frac{1}{x}$B.f(x)=ex-1C.$f(x)=x+\frac{4}{x}$D.f(x)=tanx

分析 利用特殊值法进行排除即可.

解答 解:A.当x=1时,y=1-1=0,此时02≥12不成立,
B.当x=-1时,y=$\frac{1}{e}$-1<-1,此时y2≥x2不成立,
D.当x=$\frac{5π}{4}$时,y=1,此时y2≥x2不成立,
故选:C.

点评 本题主要考查函数解析式的判断,利用特殊值法进行排除是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.下列命题正确的是(2)(5)
(1)若$\overrightarrow{a}$≠$\overrightarrow{o}$,$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{c}$;
(2)对任一向量$\overrightarrow{a}$,有$\overrightarrow{{a}^{2}}$=|$\overrightarrow{a}$|2
(3)若$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{0}$,则,$\overrightarrow{a}$与$\overrightarrow{b}$中至少有一个为$\overrightarrow{0}$;
(4)|$\overrightarrow{a}•\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|;
(5)$\overrightarrow{a}$与$\overrightarrow{b}$是两个单位向量,则$\overrightarrow{{a}^{2}}$=$\overrightarrow{{b}^{2}}$;
(6)若|$\overrightarrow{a}+\overrightarrow{b}$=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(7)($\overrightarrow{a}•\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}•\overrightarrow{c}$)对任意向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列各式的值:
(1)(sin$\frac{5π}{12}$+cos$\frac{5π}{12}$)(sin$\frac{5π}{12}$-cos$\frac{5π}{12}$)
(2)cos4$\frac{α}{2}$-sin4$\frac{α}{2}$
(3)$\frac{1}{1-tanα}$-$\frac{1}{1+tanα}$
(4)1+2cos2θ-cos2θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=sin(5x+$\frac{π}{4}$)的图象的对称中心是($\frac{1}{5}$kπ-$\frac{π}{20}$,0)k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,其上一点P与左、右焦点F1,F2组成的三角形PF1F2的周长为2+2$\sqrt{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线x-$\sqrt{2}$y+n=0(n>0)与椭圆C交于不同的两点A,B,若以线段AB为直径的圆过点$M({\frac{1}{2},0})$,求△MAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如下表所示:
月份i123456
单价xi(元)99.51010.5118
销售量yi(件)111086514
(Ⅰ)根据1至5月份的数据,求出y关于x的回归直线方程;
(Ⅱ)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问所得回归直线方程是否理想?
(Ⅲ)预计在今后的销售中,销售量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是2.5元/件,为获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).
参考公式:回归方程$\hat y=\hat bx+\hat a$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392}$,$\sum_{i=1}^5{x_i^2}=502.5$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等比数列{an}中,a2=3,a5=81,bn=1+2log3an
(1)求数列{bn}的前n项的和;
(2)已知数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前项的和为Sn,证明:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C的中心在原点,离心率等于$\frac{1}{2}$,它的一个短轴端点点恰好是抛物线$y=\frac{{\sqrt{3}}}{24}{x^2}$的焦点.
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
②当A,B运动时,满足直线PA、PB与X轴始终围成一个等腰三角形,试问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,$P(\sqrt{2},\frac{{\sqrt{2}}}{2})$在椭圆C上.
(Ⅰ) 求椭圆C的方程;
(Ⅱ)直线l与椭圆C交于不同的两点M、N,O为坐标原点,且kOM•kON=-$\frac{b^2}{a^2}$.
(ⅰ)求证:△OMN的面积为定值;
(ⅱ)求$\overrightarrow{OM}•\overrightarrow{ON}$的最值.

查看答案和解析>>

同步练习册答案