·ÖÎö £¨1£©ÉèC·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬ÓÉÀëÐÄÂʺÍËüµÄÒ»¸ö¶ÌÖá¶ËµãµãÇ¡ºÃÊÇÅ×ÎïÏß$y=\frac{{\sqrt{3}}}{24}{x^2}$µÄ½¹µã£¬ÄÜÇó³öb£¬a£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©¢ÙÉèÖ±ÏßABµÄ·½³ÌΪy=$\frac{1}{2}x+t$£¬´úÈëÍÖÔ²£¬µÃx2+tx+t2-12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½£¬ÄÜÇó³öËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£®
¢ÚÉèÖ±ÏßPAµÄбÂÊΪk£¬ÔòPBµÄбÂÊΪ-k£¬PAµÄÖ±Ïß·½³ÌΪy-3=k£¨x-2£©£¬´úÈëÍÖÔ²·½³ÌµÃ£º£¨3+4k2£©x2+8£¨3-2k£©kx+4£¨3-2k£©2-48=0£¬´Ó¶øµÃµ½x1+x2£¬x1-x2£¬ÓÉ´ËÄÜÇó³öÖ±ÏßABµÄбÂÊΪ¶¨Öµ£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄÖÐÐÄÔÚԵ㣬ÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶ÌÖá¶ËµãµãÇ¡ºÃÊÇÅ×ÎïÏß$y=\frac{{\sqrt{3}}}{24}{x^2}$µÄ½¹µã£¬
¡àÉèC·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬
Ôòb=2$\sqrt{3}$£®ÓÉ$\frac{c}{a}=\frac{1}{2}$£¬a2=b2+c2£¬µÃa=4£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$£®¡£¨4·Ö£©
£¨2£©¢ÙÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßABµÄ·½³ÌΪy=$\frac{1}{2}x+t$£¬
´úÈë$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ÖУ¬ÕûÀíµÃx2+tx+t2-12=0£¬
¡÷=t2-4£¨t2-12£©£¾0£¬½âµÃ-4£¼t£¼4£¬x1+x2=-t£¬${x}_{1}{x}_{2}={t}^{2}-12$£¬
ËıßÐÎAPBQµÄÃæ»ýS=$\frac{1}{2}¡Á6¡Á$|x1-x2|=3$\sqrt{48-3{t}^{2}}$£¬
µ±t=0ʱ£¬${S}_{max}=12\sqrt{3}$£®
¢Úµ±PA=PBʱ£¬PA¡¢PBµÄбÂÊÖ®ºÍΪ0£¬ÉèÖ±ÏßPAµÄбÂÊΪk£¬ÔòPBµÄбÂÊΪ-k£¬
PAµÄÖ±Ïß·½³ÌΪy-3=k£¨x-2£©£¬
´úÈë$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ÖÐÕûÀíµÃ£º£¨3+4k2£©x2+8£¨3-2k£©kx+4£¨3-2k£©2-48=0£¬
¡à2+1=$\frac{8£¨2k-3£©k}{3+4{k}^{2}}$£¬
ͬÀí2+2=$\frac{8£¨2k+3£©k}{3+4{k}^{2}}$£¬x1+x2=$\frac{16{k}^{2}-12}{3+4{k}^{2}}$£¬x1-x2=$\frac{-48k}{3+4{k}^{2}}$£¬
´Ó¶ø${k}_{AB}=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{k£¨{x}_{1}+{x}_{2}£©-4k}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$£¬¼´Ö±ÏßABµÄбÂÊΪ¶¨Öµ£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éËıßÐÎÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂÊÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $f£¨x£©=x-\frac{1}{x}$ | B£® | f£¨x£©=ex-1 | C£® | $f£¨x£©=x+\frac{4}{x}$ | D£® | f£¨x£©=tanx |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a£¾b£¾c | B£® | b£¾a£¾c | C£® | c£¾b£¾a | D£® | b£¾c£¾a |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{x^2}{4}+\frac{y^2}{2}=1$ | B£® | $\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{2}$=1 | C£® | x2+y2=1 | D£® | $\frac{y^2}{4}-\frac{x^2}{2}=1$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com