18£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬ÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶ÌÖá¶ËµãµãÇ¡ºÃÊÇÅ×ÎïÏß$y=\frac{{\sqrt{3}}}{24}{x^2}$µÄ½¹µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªP£¨2£¬3£©¡¢Q£¨2£¬-3£©ÊÇÍÖÔ²ÉϵÄÁ½µã£¬A£¬BÊÇÍÖÔ²ÉÏλÓÚÖ±ÏßPQÁ½²àµÄ¶¯µã£®
¢ÙÈôÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬ÇóËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£»
¢Úµ±A£¬BÔ˶¯Ê±£¬Âú×ãÖ±ÏßPA¡¢PBÓëXÖáʼÖÕΧ³ÉÒ»¸öµÈÑüÈý½ÇÐΣ¬ÊÔÎÊÖ±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèC·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬ÓÉÀëÐÄÂʺÍËüµÄÒ»¸ö¶ÌÖá¶ËµãµãÇ¡ºÃÊÇÅ×ÎïÏß$y=\frac{{\sqrt{3}}}{24}{x^2}$µÄ½¹µã£¬ÄÜÇó³öb£¬a£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©¢ÙÉèÖ±ÏßABµÄ·½³ÌΪy=$\frac{1}{2}x+t$£¬´úÈëÍÖÔ²£¬µÃx2+tx+t2-12=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½£¬ÄÜÇó³öËıßÐÎAPBQÃæ»ýµÄ×î´óÖµ£®
¢ÚÉèÖ±ÏßPAµÄбÂÊΪk£¬ÔòPBµÄбÂÊΪ-k£¬PAµÄÖ±Ïß·½³ÌΪy-3=k£¨x-2£©£¬´úÈëÍÖÔ²·½³ÌµÃ£º£¨3+4k2£©x2+8£¨3-2k£©kx+4£¨3-2k£©2-48=0£¬´Ó¶øµÃµ½x1+x2£¬x1-x2£¬ÓÉ´ËÄÜÇó³öÖ±ÏßABµÄбÂÊΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄÖÐÐÄÔÚÔ­µã£¬ÀëÐÄÂʵÈÓÚ$\frac{1}{2}$£¬ËüµÄÒ»¸ö¶ÌÖá¶ËµãµãÇ¡ºÃÊÇÅ×ÎïÏß$y=\frac{{\sqrt{3}}}{24}{x^2}$µÄ½¹µã£¬
¡àÉèC·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬
Ôòb=2$\sqrt{3}$£®ÓÉ$\frac{c}{a}=\frac{1}{2}$£¬a2=b2+c2£¬µÃa=4£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$£®¡­£¨4·Ö£©
£¨2£©¢ÙÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßABµÄ·½³ÌΪy=$\frac{1}{2}x+t$£¬
´úÈë$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ÖУ¬ÕûÀíµÃx2+tx+t2-12=0£¬
¡÷=t2-4£¨t2-12£©£¾0£¬½âµÃ-4£¼t£¼4£¬x1+x2=-t£¬${x}_{1}{x}_{2}={t}^{2}-12$£¬
ËıßÐÎAPBQµÄÃæ»ýS=$\frac{1}{2}¡Á6¡Á$|x1-x2|=3$\sqrt{48-3{t}^{2}}$£¬
µ±t=0ʱ£¬${S}_{max}=12\sqrt{3}$£®
¢Úµ±PA=PBʱ£¬PA¡¢PBµÄбÂÊÖ®ºÍΪ0£¬ÉèÖ±ÏßPAµÄбÂÊΪk£¬ÔòPBµÄбÂÊΪ-k£¬
PAµÄÖ±Ïß·½³ÌΪy-3=k£¨x-2£©£¬
´úÈë$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ÖÐÕûÀíµÃ£º£¨3+4k2£©x2+8£¨3-2k£©kx+4£¨3-2k£©2-48=0£¬
¡à2+1=$\frac{8£¨2k-3£©k}{3+4{k}^{2}}$£¬
ͬÀí2+2=$\frac{8£¨2k+3£©k}{3+4{k}^{2}}$£¬x1+x2=$\frac{16{k}^{2}-12}{3+4{k}^{2}}$£¬x1-x2=$\frac{-48k}{3+4{k}^{2}}$£¬
´Ó¶ø${k}_{AB}=\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{k£¨{x}_{1}+{x}_{2}£©-4k}{{x}_{1}-{x}_{2}}$=$\frac{1}{2}$£¬¼´Ö±ÏßABµÄбÂÊΪ¶¨Öµ£®¡­£¨13·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éËıßÐÎÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬¿¼²éÖ±ÏßµÄбÂÊÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôº¯Êýf£¨x£©=$\frac{2016-bx}{x-a}$µÄ¶Ô³ÆÖÐÐÄÊÇ£¨1£¬2£©£¬ÏòÁ¿$\overrightarrow{m}$=£¨a£¬b£©£¬Ôò|$\overrightarrow{m}$|=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÉèP£¨x0£¬y0£©ÊǺ¯Êýf£¨x£©Í¼ÏóÉÏÈÎÒâÒ»µã£¬ÇÒ$y_0^2¡Ýx_0^2$£¬Ôòf£¨x£©µÄ½âÎöʽ¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®$f£¨x£©=x-\frac{1}{x}$B£®f£¨x£©=ex-1C£®$f£¨x£©=x+\frac{4}{x}$D£®f£¨x£©=tanx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ12£¬±íÃæ»ýΪ36£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖª$a={log_{\frac{1}{3}}}\frac{1}{2}$£¬b=log23£¬c=log34£¬Ôò£¨¡¡¡¡£©
A£®a£¾b£¾cB£®b£¾a£¾cC£®c£¾b£¾aD£®b£¾c£¾a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ä³ÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃÈýÀâ×¶µÄ×ÀâµÄÀⳤΪ$\sqrt{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®É躯Êýf£¨x£©=|x-3|+|x+7|£®
£¨1£©½â²»µÈʽ£ºf£¨x£©£¼16£»
£¨2£©Èô´æÔÚx0¡ÊR£¬Ê¹f£¨x0£©£¼a£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÈçͼËùʾ£¬µãF1£¨0£¬-$\sqrt{2}$£©£¬F2£¨0£¬$\sqrt{2}$£©£¬¶¯µãMµ½µãF2µÄ¾àÀëÊÇ4£¬Ïß¶ÎMF1µÄÖд¹Ïß½»MF2ÓÚµãP£®µ±µãM±ä»¯Ê±£¬Ôò¶¯µãPµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{x^2}{4}+\frac{y^2}{2}=1$B£®$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{2}$=1C£®x2+y2=1D£®$\frac{y^2}{4}-\frac{x^2}{2}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÉèÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊ$e=\frac{{\sqrt{2}}}{2}$£¬ÍÖÔ²ÉÏÒ»µãAµ½ÍÖÔ²CÁ½½¹µãµÄ¾àÀëÖ®ºÍΪ4£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±ÏßlÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬ÇÒABÖеãΪ$M£¨{-1£¬\frac{1}{2}}£©$£¬ÇóÖ±Ïßl·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸