| A. | f(x)在区间(0,$\frac{π}{4}$)上单调递增 | |
| B. | f(x)的一个对称中心为($\frac{π}{6}$,-$\sqrt{3}$) | |
| C. | 当x∈[0,$\frac{π}{2}$]时,f(x)的值域为[-2$\sqrt{3}$,0] | |
| D. | 将f(x)的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$,再向左平移$\frac{π}{6}$个单位后得到y=2sin(4x+$\frac{π}{3}$)-$\sqrt{3}$ |
分析 利用二倍角公式及辅助角公式对函数化简,根据周期公式求ω的值,从而可求f(x)的表达式,结合正弦函数的性质分别对各个选项判断即可.
解答 解:f(x)=sin2ωx-$\sqrt{3}$cos2ωx-$\sqrt{3}$=2sin(2ωx-$\frac{π}{3}$)-$\sqrt{3}$.
因为$\frac{T}{2}$=$\frac{π}{2}$,所以T=π,ω=1.
所以f(x)=2sin(2x-$\frac{π}{3}$)-$\sqrt{3}$,
对于A,由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ,
得:-$\frac{π}{12}$+kπ≤x≤$\frac{5π}{12}$+kπ,
∴f(x)在区间(0,$\frac{π}{4}$)上单调递增,故A正确,
对于B,由2x-$\frac{π}{3}$=kπ,得:x=$\frac{kπ}{2}$+$\frac{π}{6}$,
x=$\frac{π}{6}$时,y=-$\sqrt{3}$,
故f(x)的一个对称中心为($\frac{π}{6}$,-$\sqrt{3}$),故B正确,
对于C,当x∈[0,$\frac{π}{2}$]时,2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
x=$\frac{5}{12}$π时,f(x)最大,最大值是2-$\sqrt{3}$,
x=$\frac{2}{3}$π时,f(x)最小,最小值是-2-$\sqrt{3}$,
f(x)的值域为[-2-$\sqrt{3}$,2-$\sqrt{3}$],故C错误,
对于D,将f(x)的纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$,再向左平移$\frac{π}{6}$个单位后得到y=2sin(4x+$\frac{π}{3}$)-$\sqrt{3}$,故D正确,
故选:C.
点评 本题主要考查了二倍角公式、辅助角公式把不同名的三角函数含为一个角的三角函数,进而研究三角函数的性质:周期性及周期公式,函数的最值的求解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{x}$=$\overrightarrow{a}$ | B. | $\overrightarrow{x}$与$\overrightarrow{a}$反向 | C. | |$\overrightarrow{x}$|=|$\overrightarrow{a}$|且$\overrightarrow{x}$与$\overrightarrow{a}$反向 | D. | $\overrightarrow{x}$与$\overrightarrow{a}$是相反向量 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com