精英家教网 > 高中数学 > 题目详情
已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD,试问:当
CD
CC1
的值为多少时,A1C⊥平面C1BD?并给予证明.
考点:直线与平面垂直的性质
专题:空间位置关系与距离
分析:
CD
CC1
=1时,能使A1C⊥平面C1BD,A1C与C1O相交于G,说明点G是正三角形C1BD的中心,证明CG⊥平面C1BD,即可证明A1C⊥平面C1BD.
解答: 解:当
CD
CC1
=1时,能使A1C⊥平面C1BD.
CD
CC1
=1,
∴BC=CD=C1C,
又∠BCD=∠C1CB=∠C1CD,
由此可推得BD=C1B=C1D.
∴三棱锥C-C1BD是正三棱锥.(3分)
设A1C与C1O相交于G.
∵A1C1∥AC,且A1C1:OC=2:1,
∴C1G:GO=2:1.
又C1O是正三角形C1BD的BD边上的高和中线,
∴点G是正三角形C1BD的中心,
∴CG⊥平面C1BD,
即A1C⊥平面C1BD.(6分)
点评:本小题主要考查直线与直线、直线与平面的关系,逻辑推理能力,考查空间想象能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点M(-3,2
3
)是抛物线y2=2px(p>0)准线上一点,过该抛物线焦点F的直线与它交于A、B两点,若
FM
FA
=0,则△MAB的面积为(  )
A、32
3
B、20
3
C、24
3
D、16
2

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x∈N,x3<x2;命题q:?a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),则(  )
A、p假q假B、p真q假
C、p假q真D、p真q真

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的方格柢中,向量
a
b
c
的起点和终点均在格点(小正方形顶点)上,若
c
与x
a
+y
b
(x,y为非零实数)共线,则
x
y
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

P为双曲线
x2
9
-
y2
16
=1的右支上一点,M,N分别是(x+5)2+y2=4圆和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为                                    (  )
A、8B、9C、10D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b>0,a≠b,lna-lnb=a-b,给出下列结论:
①0<ab<1;②0<a+b<2;③a+b-ab>1.
其中所有正确结论的序号是(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点(n,
Sn
n
)(n∈N*)均在函数y=-x+12的图象上
(Ⅰ)写出Sn关于n的函数表达式
(Ⅱ)求证:数列{an}的通项公式并证明它是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:a1=1,an+1=an+3,n∈N*
(Ⅰ)求{an}的通项公式及前n项和Sn
(Ⅱ)已知{bn}是等比数列,且b1=a2,b4=a6+S8.求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4),若(
b
+x
a
)⊥
c
,则实数x=(  )
A、-
3
11
B、-
11
3
C、
1
2
D、
3
5

查看答案和解析>>

同步练习册答案