精英家教网 > 高中数学 > 题目详情
下列命题中正确的是
 
(填写所有正确命题的编号).
①若f(x)=x5+x4+x3+2x+1,则f(2)的值用二进制表示为111101;
②若a>0,b>0,m>0,则
b
a
b+m
a+m

③函数y=xlnx与y=
lnx
x
在点(1,0)处的切线相同;
④?x∈R,ex≥ex;
⑤已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=3,则f(1)+f(2)+f(3)…+f(2013)+f(2014)的值为-3.
考点:命题的真假判断与应用
专题:简易逻辑
分析:对于①根据二进制表示为111101的表示主式即可进行判断;
对于②根据不等式的基本性质,比较大小的方法是做差,只需将比较的两个分式做差与零比较大小即可.
b+m
a+m
-
b
a
=
ab+am-ab-bm
a(a+m)
=
m(a-b)
a(a+m)
,与零比较即可求出.
对于③利用求导法则,以及(lnx)′=
1
x
,求出函数解析式的导函数,然后把切点的横坐标x=1代入导函数中,求出的导函数值即为所求切线即得.
对于④用导数求函数的单调区间,先求函数的导数,再令其大于0,利用单调性即可证得.
对于⑤先根据奇函数的性质得到f(0)=0,再由对称性得到f(2)=f(0)=0,再由奇函数和关于直线x=1对称得到f(4)=f(-2)=0,同样得到当x为偶数时,f(x)=0;根据f(-1)=3和f(x)为奇函数得到f(1)=-f(-1)=-3,再由函数f(x)关于直线x=1对称得到f(3)=f(-1)=3,进而可得到当x为奇数时,f(x)=1或者-1交替出现,进而可得到f(1)+f(2)+f(3)+…+f(2014)的值.
解答: 解:①二进制111101即:25+24+23+2×2+1=f(2)故①正确;
②∵
b+m
a+m
-
b
a
=
ab+am-ab-bm
a(a+m)
=
m(a-b)
a(a+m)

∵a>b>0,m>0,∴a-b>0,a+m>0
m(a-b)
a(a+m)
>0
b+m
a+m
b
a

故②错误;
③函数y=xlnx求导得:y′=lnx+1,
把x=1代入导函数得:y′|x=1=ln1+1=1,
则所求相切线斜率为1.
 y′=
(lnx)′-lnx•x′
x2
=
1-lnx
x2

 y'(1)=1,
又当x=1时y=0
∴切线方程为y=x-1,
切线相同,故③正确.
对于④:设f(x)=ex-ex,f′(x)=ex-e,
令f′(x)>0得x>1,
∴函数f(x)的单调递增区间为[1,+∞),单调递减区间为(-∞,1],∴f(x)>f(1),即?x∈R,ex≥ex
故④正确.
对于⑤,根据奇函数性质,f(0)=0
∵f(x)关于直线x=1对称,∴f(2)=f(0)=0
再由奇函数性质,f(-2)=-f(2)=0
再由关于直线x=1对称性质,f(4)=f(-2)=0
∴f(-4)=-f(4)=0
∴f(6)=f(-4)=0

∴当x为偶数时,f(x)=0,
由题意,f(-1)=3,
根据奇函数性质,f(1)=-f(-1)=-3,
根据关于直线x=1对称性质,f(3)=f(-1)=3,
不难得出,当x为奇数时,f(x)=3或者-3,交替出现,最后出现的一个是f(2013),很明显f(2013)=-3,前面的2012个全部抵消掉了
故而最终结果就是-3.故⑤正确.
故答案为:①③④⑤.
点评:本题考查了不等式的基本性质,要用做差法进行因式分解与0进行比较即可.同时考查了利用导数求曲线方程上某点切线方程的斜率,求导法则运用,以及简单复合函数的导数的求法,以及利用函数性质的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=1-2t
y=t
,曲线C的参数方程为
x=cosθ
y=
3
sinθ
(θ为参数).
(1)将直线l与曲线C的参数方程化为一般方程;
(2)若已知P(x,y)是曲线C上的一点,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={-1,0,1},B={1,3},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且直线PA⊥平面ABCD.过直线BD且垂直于直线PC的平面交PC于点E,当三棱锥E-BCD的体积取到最大值时,侧棱PA的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
bx+1
2x+a
,a、b为常数,且ab≠2,若对一切x恒有f(x)f(
1
x
)=k(k为常数)则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知b=50
3
,c=80,A=30°,则△ABC中的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)(x∈D)满足:对任意x1∈D,都存在x2∈D,使得
f(x1)+f(x2)
2
=C,则称常数C为函数f(x)在定义域D的“函数均值”.已知函数g(x)=x3(x∈[1,2]),则g(x)的“函数均值”为(  )
A、
3
2
B、
7
4
C、
9
2
D、
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

假设某设备的使用年限x和所支出的维修费用y呈线性相关关系,且有如下的统计资料:
使用年限x23456
维修费用y2.23.85.56.57
则x和y之间的线性回归方程为(  )
A、y=1.23x+0.08
B、y=2x-1.8
C、y=x+1.5
D、y=2.04x-0.57

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,解关于x的不等式:ax+3≤1-x.

查看答案和解析>>

同步练习册答案