精英家教网 > 高中数学 > 题目详情
10.设α,β∈[0,π],且满足sinαcosβ-cosαsinβ=1,则sin(2α-β)+sin(α-2β)的取值范围为(  )
A.[-$\sqrt{2}$,1]B.[-1,$\sqrt{2}$]C.[-1,1]D.[1,$\sqrt{2}$]

分析 先利用正弦的两角和公式化简已知等式求得α=$\frac{π}{2}$+β,利用诱导公式,同角三角函数基本关系式化简,根据β的范围求得cos(β+$\frac{π}{4}$)的范围,即可得解.

解答 解:∵sinαcosβ-sinβcosα=sin(α-β)=1,α、β∈[0,π],
∴α-β=$\frac{π}{2}$,可得:α=$\frac{π}{2}$+β∈[$\frac{π}{2}$,π],
∴$\frac{π}{2}$+β∈[$\frac{π}{2}$,π],
∴β+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
又∵β+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴β+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
∴cos(β+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$],
∴sin(2α-β)+sin(α-2β)=sin(β+π)+sin($\frac{π}{2}$-β)=cosβ-sinβ=$\sqrt{2}$cos(β+$\frac{π}{4}$)∈[-1,1],
故选:C.

点评 本题主要考查了诱导公式,同角三角函数基本关系式的应用,求出α和β互余的关系是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知等比数列{an}的前n项和为Sn,若S3=2,S9=146,求S6的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若a=$\frac{\sqrt{5}}{2}$b,A=2B,则cosB等于(  )
A.$\frac{\sqrt{5}}{3}$B.$\frac{\sqrt{5}}{4}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x2+mln(x+1).
(1)若m=-1,试比较当x∈(0,+∞)时,f(x)与x3的大小;
(2)证明:对任意的正整数n,不等式e0+e-1×4+e-2×9+…${e}^{(1-n){n}^{2}}$<$\frac{n(n+3)}{2}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数y=sinx的图象通过怎样的变换可得到函数y=cos3x-sin3x的图象?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在等腰三角形ABC中,∠A=150°,AB=AC=1,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${∫}_{-3}^{-1}$$\sqrt{1-(x+2)^{2}}$dx=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.将下列函数的最小正周期T填在空格内:
(1)y=2cos(2x+$\frac{π}{3}$),T=π
(2)y=sinx+$\sqrt{3}$cosx,T=2π
(3)y=cos2$\frac{π}{2}$x+1,T=2
(4)y=sin4x-cos4x,T=π
(5)y=sin2x+2sinxcosx,T=π
(6)y=sin4x+cos4x,T=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.顶点在原点,且过点(-1,1)的抛物线的标准方程是(  )
A.y2=-xB.x2=yC.y2=-x或x2=yD.y2=x或x2=-y

查看答案和解析>>

同步练习册答案