精英家教网 > 高中数学 > 题目详情
14.已知复数z满足z2=2i,则z=(  )
A.1+iB.1-iC.±(1-i)D.±(1+i)

分析 通过设z=a+bi,可得z2=a2-b2+2abi,利用z2=2i,计算即得结论.

解答 解:设z=a+bi,则z2=a2+2abi+b2i2=a2-b2+2abi,
∵z2=2i,∴$\left\{\begin{array}{l}{{a}^{2}-{b}^{2}=0}\\{ab=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=1}\end{array}\right.$或$\left\{\begin{array}{l}{a=-1}\\{b=-1}\end{array}\right.$,
∴z=1+i或z=-1-i,
故选:D.

点评 本题考查复数相等及运算,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某考生参加一种测试,需回答三个问题,规定:每题回答正确得100分,回答不正确得-100分.已知该考生每题回答正确的概率都是0.8,且各题回答正确与否相互之间没有影响.
(1)求这名同学回答这三个问题的总得分X的概率分布列和数学期望;
(2)求这名同学总得分不低于100分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知命题P为:“?x∈R,|x|≤0”,则¬P为:?x∈R,|x|>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,M、N分别是这段图象的最高点和最低点,且$\overrightarrow{OM}•\overrightarrow{ON}$=0(O为坐标原点),则A=$\frac{\sqrt{7}}{12}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义在R上的函数φ(x)与g(x)满足:φ(x)+g(x)=ex-x2-2x-2,φ(x)-g(x)=ex+x2+2x-4;(注:e为自然对数的底数,e≈2.78);
(1)求φ(x),g(x)的解析式;
(2)对?x1∈[-1,1],?x2∈[0,1],都有g(x1)+ax1+5≥φ(x2)-x2φ(x2)成立,求实数a的范围;
(3)设f(x)=$\left\{\begin{array}{l}{φ(x),(x>0)}\\{g(x),(x≤0)}\end{array}\right.$,判断方程f[f(x)]=2的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=alnx+$\frac{1}{x}$+3x-4.
(1)当a=-2时,求f(x)的单调区间;
(2)若x≥1时,f(x)≥0恒成立,求实数a的取值范围;
(3)求证:$\frac{2}{4×{1}^{2}-1}$+$\frac{4}{4×{2}^{2}-1}$+$\frac{4}{4×{3}^{2}-1}$+…+$\frac{n+1}{4×{n}^{2}-1}$>$\frac{1}{4}$ln(2n+1)对一切正整数n均成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,已知A为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1上的动点,MN为圆(x-1)2+y2=1的一条直径,则|$\overrightarrow{AM}$•$\overrightarrow{AN}$|的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某市对汽车限购政策进行了调查,在参加调查的300名有车人中116名持反对意见,200名无车人中有121名持反对意见,在运用这些数据说明“拥有车辆”与“反对汽车限购政策”是否有关系时,最有说服力的方法是(  )
A.平均数与方差B.回归直线方程C.独立性检验D.概率

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设Sn是等比数列{an}的前n项和,公比q=2,S5=93,则a4=24.

查看答案和解析>>

同步练习册答案