精英家教网 > 高中数学 > 题目详情
5.已知椭圆C的两焦点为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),长轴长是短轴长的2倍.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(1,0)的直线l与椭圆C交于M(x1,y1),N(x2,y2)两点,若x1x2+y1y2=0,求直线l的方程.

分析 (Ⅰ)由题意可得a=2b,a,b,c的关系,计算即可得到a,b,进而得到椭圆方程;
(Ⅱ)设直线l的方程为y=k(x-1),代入椭圆方程,运用韦达定理,化简整理即可得到k,进而得到所求直线方程.

解答 解:(Ⅰ)由已知$\left\{\begin{array}{l}a=2b\;,\;\\ c=\sqrt{3}\;\\{a^2}={b^2}+{c^2}\;,\;\;\end{array}\right.$
解得a2=4,b2=1,
所以椭圆的方程为$\frac{x^2}{4}+{y^2}=1$;              
(Ⅱ)设直线l的方程为y=k(x-1),
由$\left\{\begin{array}{l}{x^2}+4{y^2}=4\;,\;\\ y=k(x-1)\;,\;\end{array}\right.$消去y,得(1+4k2)x2-8k2x+4k2-4=0,
所以${x_1}+{x_2}=\frac{{8{k^2}}}{{1+4{k^2}}}$,${x_1}•{x_2}=\frac{{4({k^2}-1)}}{{1+4{k^2}}}$.
${x_1}{x_2}+{y_1}{y_2}={x_1}{x_2}+{k^2}({x_1}-1)({x_2}-1)=(1+{k^2}){x_1}{x_2}-{k^2}({x_1}+{x_2})+{k^2}$
=$\frac{{4(1+{k^2})({k^2}-1)}}{{1+4{k^2}}}-\frac{{8{k^4}}}{{1+4{k^2}}}+{k^2}=\frac{{{k^2}-4}}{{1+4{k^2}}}$=0,
所以k2-4=0,解得k=±2.
所以直线l的方程为y=2x-2或y=-2x+2.

点评 本题考查椭圆的方程和性质,主要考查椭圆的方程和运用,联立直线方程,运用韦达定理,考查化简整理和运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,
(1)已知d=3,an=20,Sn=65,求n;
(2)已知a11=-1,求S21
(3)已知an=11-3n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x∈R,a<lg(|x-3|+|x+7|)恒成立,则a的取值范围是(  )
A.a≥1B.a>1C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在△ABC中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=2,∠BAC=90°,D,E,F分别是边BC,CA,AB上的点且$\overrightarrow{CE}$=$\frac{1}{4}\overrightarrow{CA}$,$\overrightarrow{AF}$=$\frac{1}{4}\overrightarrow{AB}$,$\overrightarrow{BD}$=$\frac{1}{4}\overrightarrow{BC}$,则$\overrightarrow{DE}$•$\overrightarrow{DF}$的值为$\frac{11}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.下表是某单位在2014年1-5月份用水量(单位:百吨)的一组数据:
月份x12345
用水量y2.5344.55.2
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0.05,视为“预测可靠”,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(2)从这5个月中任取2个月的用水量,求所取2个月的用水灵之和不超过7(单位:百吨)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知O为坐标原点,F为抛物线C:y2=4$\sqrt{6}$x的焦点,P为C上一点,若△POF的面积为6$\sqrt{3}$,则|PF|=(  )
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$4\sqrt{6}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两点F1(-1,0),F2(1,0),点P在以F1,F2为焦点的椭圆C,且|PF1|,|F1F2|,|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m(|k|≤1)(m>0)与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,当|F1M|+|F2N|最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线C上的点到椭圆 $\frac{{x}^{2}}{1{3}^{2}}$+$\frac{{y}^{2}}{1{2}^{2}}$=1的两个焦点的距离的差的绝对值等于8,则曲线C的标准方程为(  )
A.$\frac{{x}^{2}}{1{3}^{2}}$-$\frac{{y}^{2}}{1{2}^{2}}$=1B.$\frac{{x}^{2}}{1{3}^{2}}$-$\frac{{y}^{2}}{{5}^{2}}$=1
C.$\frac{{x}^{2}}{{3}^{2}}$-$\frac{{y}^{2}}{{4}^{2}}$=1D.$\frac{{x}^{2}}{{4}^{2}}$-$\frac{{y}^{2}}{{3}^{2}}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x>1},集合B={x|3x-4≤0},满足如图所示的阴影部分的集合是(  )
A.{x|x>1}B.{x|1<x≤$\frac{4}{3}$}C.{x|x≤1}D.{x|x>$\frac{4}{3}$}

查看答案和解析>>

同步练习册答案