精英家教网 > 高中数学 > 题目详情
13.已知(1-i)•z=2,则复数z的虚部为1.

分析 把已知等式变形,利用复数代数形式的乘除运算化简得答案.

解答 解:由(1-i)•z=2,得
$z=\frac{2}{1-i}=\frac{2(1+i)}{(1-i)(1+i)}=1+i$,
∴复数z的虚部为1.
故答案为:1.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆两焦点的坐标为F1(-1,0),F2(1,0),点P为椭圆上一点,|PF1|,|F1F2|,|F2P|成等差数列,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(I)已知向量$\overrightarrow{OA}=(1,-2)$,$\overrightarrow{OB}=(4,-1)$,$\overrightarrow{OC}=({m,m+1})$.若$\overrightarrow{AB}∥\overrightarrow{OC}$,求实数m的值;
( II)已知矩形ABCD的边长为1,点E是边AB的中点,求$\overrightarrow{DE}•\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xoy中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)若直线l的参数方程中t=$\sqrt{2}$的时,得到M点,求M的极坐标方程和曲线C的直角坐标方程;
(Ⅱ)若点P(1,2),l和曲线C交于A,B两点,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.极坐标系中,过点P(1,π)且倾斜角为$\frac{π}{4}$的直线方程为(  )
A.ρ=sin θ+cos θB.ρ=sin θ-cos θC.ρ=$\frac{1}{sinθ+cosθ}$D.ρ=$\frac{1}{sinθ-cosθ}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.Rt△ABC,A(-1,3),B(4,2),C点在x轴上,求C点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,过点P(0,2)的直线l与椭圆$C:\frac{x^2}{4}+{y^2}=1$相交于A,B两点,过点B作x轴的平行线交椭圆于D点.
(1)求证:直线AD过定点M并求点M的坐标;
(2)求三角形ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a>b,c>d,则(  )
A.ac>bdB.ac<bdC.$\frac{a}{c}$>$\frac{b}{d}$D.a+c>b+d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-1,g(x)=x+1.
(1)求函数F(x)=f(x)+|g(x)|在区间[-2,0]上的值域.
(2)若当x∈R时,不等式f(x)≥λg(x)恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案