精英家教网 > 高中数学 > 题目详情
已知数列{an}是公差不为0的等差数列,满足S3=9,且a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设b1=a1,bn+1-bn=2 an(n∈N*),求数列{bn}的通项公式.
考点:数列的求和,等差数列的通项公式,等比数列的通项公式
专题:计算题,等差数列与等比数列
分析:(Ⅰ)利用等差数列与等比数列的定义、通项公式及其前n项和公式即可得出;
(Ⅱ)利用叠加法,再求和,即可求数列{bn}的通项公式.
解答: 解:(Ⅰ)由题意知
S3=9
a
2
2
=a1a5

3(a1+d)=9
(a1+d)2=a1(a1+4d).

所以
a1+d=3
d2=2a1d.

因为d≠0,所以a1=1,d=2.
所以an=2n-1.          …(6分)
(Ⅱ)因为bn+1-bn=2an(n∈N*),所以b2-b1=2a1b3-b2=2a2
bn-bn-1=2an-1
以上各式相加,得 bn-b1=2a1+2a2+…+2an-1=21+23+…+22n-3=
2(4n-1-1)
3

bn=
22n-1+1
3
.         …(12分)
点评:本题考查了等差数列与等比数列的定义、通项公式及其前n项和公式,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线y=x3-x+1在x=1处的切线方程是(  )
A、y=1B、y=x
C、y=2x-1D、y=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是(  )
A、5
B、8
C、
17
-1
D、
5
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx.
(1)讨论f(x)的单调性;
(2)当a=-1时,过坐标原点O作曲线y=f(x)的切线,设切点为P(m,n),求实数m的值;
(3)设定义在区间D上的函数y=g(x)在点P(x0,y0)处的切线方程为l:y=h(x),当x≠x0时,若
g(x)-h(x)
x-x0
>0在区间D内恒成立,则称点P为函数y=g(x)的“转点”.当a=8时,试问:函数y=f(x)是否存在“转点”?若存在,请求出“转点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),如果存在给定的实数对(a,b),使得对f(x),f(a+x),f(a-x)有定义的所有x都有f(a+x)+f(a-x)=b恒成立,则称f(x)为“п-函数”.
(Ⅰ)判断函数f1(x)=2sinx,f2(x)=lnx是否是“п-函数”;
(Ⅱ)若f3(x)=tanx是一个“п-函数”,求出所有满足条件的有序实数对(a,b)(参考公式tan(α+β)=
tanα+tanβ
1-tanαtanβ
,tan(α-β)=
tanα-tanβ
1+tanαtanβ
);
(Ⅲ)若定义域为R的函数f(x)是“п-函数”,且存在满足条件的有序实数对(0,1)和(1,2).当x∈(0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知底面为菱形的四棱锥P-ABCD中,△ABC是边长为2的正三角形,AP=BP=
2
2
,PC=
2

(1)求证:平面PAB⊥平面ABCD;
(2)(理科)求二面角A-PC-D的余弦值;
(文科)求三棱锥D-PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥S-ABCD的底面是正方形,SA⊥底面ABCD,E是SC上一点.
(1)求证:平面EBD⊥平面SAC;
(2)假设SA=4,AB=2,求点A到平面SBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名女生和4名男生中选出4人去参加辩论比赛,问:
(1)如果4人中男生和女生各选2人,有多少种选法?
(2)如果男生中的甲与女生中的乙必须在内,有多少种选法?
(3)如果4人中必须既有男生又有女生,有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-x-
1
a
)×eax(a>0).
(Ⅰ)当a=2时,求f(x)的单调区间;
(Ⅱ)若对于任意x∈[0,2],恒有f(x)+
2
a
≥0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案