精英家教网 > 高中数学 > 题目详情
已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是(  )
A、5
B、8
C、
17
-1
D、
5
+2
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先根据抛物线方程求得焦点坐标,根据圆的方程求得圆心坐标,根据抛物线的定义可知P到准线的距离等于点P到焦点的距离,进而问题转化为求点P到点Q的距离与点P到抛物线的焦点距离之和的最小值,根据图象可知当P,Q,F三点共线时P到点Q的距离与点P到抛物线的焦点距离之和的最小,为圆心到焦点F的距离减去圆的半径.
解答: 解:抛物线y2=4x的焦点为F(1,0),圆x2+(y-4)2=1的圆心为C(0,4),
根据抛物线的定义可知点P到准线的距离等于点P到焦点的距离,
进而推断出当P,Q,F三点共线时P到点Q的距离与点P到抛物线的焦点距离之和的最小为:|FC|-r=
17
-1,
故选C.
点评:本题主要考查了抛物线的应用.考查了学生转化和化归,数形结合等数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列判断错误的是(  )
A、“am2<bm2”是“a<b”的充分不必要条件
B、若p,q均为假命题,则p且q为假命题
C、命题“?x∈R,x3-x2-1≤0”的否定是“?x∈R,x3-x2-1>0”
D、若ξ~B(4,0.25),则Dξ=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为“倍约束函数”.现给出下列函数:①f(x)=2x;②f(x)=x2+1;③f(x)=cosx;④f(x)=
x
x2-x+3
.其中是“倍约束函数”的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,若
3
是3a与3b的等比中项,则
1
a
+
1
b
的最小值(  )
A、2
B、
1
4
C、4
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a5+a6=a12,a1+a7=10,则a2+a4+a6+…+a100的值等于(  )
A、1300B、1350
C、2650D、2600

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2x+eln|x|的图象的大致形状是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
1+ax2
,其中a为实数,常数e=2.718….
(1)若x=
1
3
是函数f(x)的一个极值点,求a的值;
(2)当a取正实数时,求函数f(x)的单调区间;
(3)当a=-4时,直接写出函数f(x)的所有减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为0的等差数列,满足S3=9,且a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设b1=a1,bn+1-bn=2 an(n∈N*),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

同步练习册答案