精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2-x-
1
a
)×eax(a>0).
(Ⅰ)当a=2时,求f(x)的单调区间;
(Ⅱ)若对于任意x∈[0,2],恒有f(x)+
2
a
≥0恒成立,求a的取值范围.
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)a=2时,f(x)=(x2-x-
1
2
)e2x,得到f′(x)=2e2x(x2-1),从而求出函数的单调区间;
(Ⅱ)令g(x)=(x2-x-
1
a
)•eax+
2
a
,通过求导得出g(x)min=g(1)=
1
a
(2-ea),从而只需2-ea≥0即可,进而解出a的范围.
解答: 解:(Ⅰ)a=2时,f(x)=(x2-x-
1
2
)e2x
∴f′(x)=2e2x(x2-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
∴f(x)在(-∞,-1)递增,在(-1,1)递减,在(1,+∞)递增,
(Ⅱ)令g(x)=(x2-x-
1
a
)•eax+
2
a

∴g′(x)=eax(ax+2)(x-1),
∵a>0,x∈[0,2],∴eax(ax+2)>0,
令g′(x)>0,解得:1<x≤2,
令g′(x)<0,解得:0≤x<1,
∴g(x)在[0,1)递减,在(1,2]递增,
∴g(x)min=g(1)=
1
a
(2-ea),
∴只需2-ea≥0即可,
∴0<a<ln2.
点评:本题考查了函数的单调性,函数的极值问题,考查导数的应用,求参数的范围,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是公差不为0的等差数列,满足S3=9,且a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设b1=a1,bn+1-bn=2 an(n∈N*),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=px+q,集合A={x丨x=f(x)},集合B={x丨x=f[f(x)]}.
(1)求证:A⊆B;
(2)若A=B,求p,q应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求点P(1,2)关于直线x-y-1=0的对称点Q的坐标;
(2)求直线x+3y-1=0关于x-y+1=0的对称直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x2-a)(a∈R),g(x)=lnx.
(1)若f(x)在x=1处取得极值,求f(x)的极大值;
(2)若在区间[1,2]上f(x)的图象在g(x)图象的上方(没有公共点),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx(sinx-cosx)+1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)与直线y=x-1相切,且知点F(0,1)和直线l:y=-1,若动点P在抛物线C上(除原点外),点P处的切线记为m,过点F且与直线PF垂直的直线记为n.
(1)求抛物线C的方程;
(2)求证:直线l,m,n相交于同一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x),当x≥0,f(x)=x2-4x
(1)作出函数f(x)的图象;
(2)求函数f(x)的表达式;
(3)求满足方程f(x)=-5的解.

查看答案和解析>>

同步练习册答案