精英家教网 > 高中数学 > 题目详情
从5名女生和4名男生中选出4人去参加辩论比赛,问:
(1)如果4人中男生和女生各选2人,有多少种选法?
(2)如果男生中的甲与女生中的乙必须在内,有多少种选法?
(3)如果4人中必须既有男生又有女生,有多少种选法?
考点:计数原理的应用
专题:应用题,排列组合
分析:根据排列组合的要求分别选取即可.
解答: 解:(1)如果4人中男生和女生各选2人,有
C
2
5
C
2
4
=60种选法;
(2)如果男生中的甲与女生中的乙必须在内,则再从剩下的7人中任选2人,有
C
2
7
=21种选法;
(3)如果4人中必须既有男生又有女生,利用间接法,全选后,去掉只有男生和只有女生,故有
C
4
9
-
C
4
4
-
C
4
5
=120种选法.
点评:本题主要考查了排列组合的组合问题,灵活利用间接法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0,b>0,若
3
是3a与3b的等比中项,则
1
a
+
1
b
的最小值(  )
A、2
B、
1
4
C、4
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为0的等差数列,满足S3=9,且a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设b1=a1,bn+1-bn=2 an(n∈N*),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
4
x-x3
(1)求f(x)在x=1的切线方程;
(2)求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),过F1作与x轴不重合的直线l交椭圆于A、B两点.
(Ⅰ)若△ABF2为正三角形,求椭圆的标准方程;
(Ⅱ)若椭圆的离心率满足0<e<
5
-1
2
,O为坐标原点,求证OA2+OB2<AB2

查看答案和解析>>

科目:高中数学 来源: 题型:

成都外国语学校开设了甲,乙,丙三门选修课,学生对每门均可选或不选,且选哪门课程互不影响.已知某学生只选修甲的概率为0.08,只选修甲和乙的概率为0.12,至少选修一门的概率为0.88,用ξ表示该学生选修课程的门数,用η表示该学生选修课程门数和没有选修课程门数的乘积.
(1)记“函数f(x)=x2+ηx为偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=px+q,集合A={x丨x=f(x)},集合B={x丨x=f[f(x)]}.
(1)求证:A⊆B;
(2)若A=B,求p,q应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0)与直线y=x-1相切,且知点F(0,1)和直线l:y=-1,若动点P在抛物线C上(除原点外),点P处的切线记为m,过点F且与直线PF垂直的直线记为n.
(1)求抛物线C的方程;
(2)求证:直线l,m,n相交于同一点.

查看答案和解析>>

同步练习册答案