精英家教网 > 高中数学 > 题目详情
17.求下列不等式的解集:
(1)arcsin(1-x)≤arcsin2x;           
(2)arcsin(3x-2)≤$\frac{π}{6}$.

分析 由条件利用反正弦函数的定义和性质,求得x的范围.

解答 解:(1)∵y=arcsinx在[-1,1]上是增函数,arcsin(1-x)≤arcsin2x,
∴$\left\{\begin{array}{l}{-1≤1-x≤1}\\{-1≤2x≤1}\\{1-x≤2x}\end{array}\right.$,求得$\frac{1}{3}$≤x≤$\frac{1}{2}$,故要求的x的范围为[$\frac{1}{3}$,$\frac{1}{2}$].           
(2)∵arcsin(3x-2)≤$\frac{π}{6}$,∴sin[arcsin(3x-2)]≤sin$\frac{π}{6}$=$\frac{1}{2}$,
即-1≤3x-2≤$\frac{1}{2}$,求得$\frac{1}{3}$≤x≤$\frac{5}{6}$,故不等式的解集为[$\frac{1}{3}$,$\frac{5}{6}$].

点评 本题主要考查反正弦函数的定义和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设集合A={(m1,m2,m3)|mi∈{-2,0,2},i∈{1,2,3}},则集合A满足条件:“2≤|m1|+|m2|+|m3|≤5”的元素个数为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在数列{an}中,an=n(sin$\frac{nπ}{2}$+cos$\frac{nπ}{2}$),前n项和为Sn,则S100=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.i是虚数单位,复数z满足$\frac{z-3i}{4i}$=i,则|z|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等差数列的第1项是7,第9项是1,则它的第5项是(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l过点A(2,-1),倾斜角α的取值范围是120°<α<135°,在直角坐标系中给定两点M(-2,3),N(1,$\sqrt{3}$-1),问l与线段MN是否有交点?若有交点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:三点(1,1)、(-1,-1)和(-$\sqrt{3}$,$\sqrt{3}$)为正三角形的顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若数列{an}的通项公式为an=4•3-n(n∈N*),则这个数列是一个(  )
A.以4为首项,3为公比的等比数列B.以4为首项,$\frac{1}{3}$为公比的等比数列
C.以$\frac{4}{3}$为首项,3为公比的等比数列D.以$\frac{4}{3}$为首项,$\frac{1}{3}$为公比的等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+1,x≥1}\\{(\frac{1}{2})^{x}+\frac{1}{2},x<1}\end{array}\right.$,则f(f(2))=(  )
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

同步练习册答案