精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥 中, 平面 ,底面是等腰梯形,且 ,其中 .

1)证明:平面 平面 .

2)求点 到平面 的距离。

【答案】(1)见解析;(2)

【解析】

(1)由题意结合已知数据,利用勾股数证得,又由 平面可得,从而证得 平面,再利用面面垂直的判定定理可得结论.

2)先求得,利用余弦定理及三角形面积公式求得,利用等体积转化根据可得距离.

1)过点于点.

因为底面 是等腰梯形,且 ,所以

中, ,同理可得

因为 相似,所以

所以 ,则

因为 平面平面,所以

因为 平面平面,且 ,所以 平面

因为 平面 ,所以平面 平面

2)因为平面,所以

因为 ,所以

中,因为

所以

所以 ,则的面积为

设点到平面 的距离为,则三棱锥的体积

因为 ,所以,解得

故点到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题α:函数的定义域是R;命题β:在R上定义运算xy=x1-y).不等式(x-ax+a)<1对任意实数x都成立.

1)若αβ中有且只有一个真命题,求实数a的取值范围;

2)若αβ中至少有一个真命题,求实数a的取值范围;

3)若αβ中至多有一个真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2a,F为CD的中点.

(1)求证:AF∥平面BCE;

(2)判断平面BCE与平面CDE的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f (x)在区间(-∞,2)上为单调递增函数,求实数a的取值范围;

(2)若a=0,x0<1,设直线y=g(x)为函数f (x)的图象在x=x0处的切线,求证:f (x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

)设不等式的解集为C,当时,求实数取值范围;

)若对任意,都有成立,试求时,的值域;

)设,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本万元,且,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.

1)求出2019年的利润(万元)关于年产量x(百辆)的函数关系式;(利润=销售额成本)

22019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,其离心率为,以原点为圆心,椭圆的短轴长为直径的圆被直线截得的弦长等于.

(1)求椭圆的方程;

(2)设为椭圆的左顶点,过点的直线与椭圆的另一个交点为,与轴相交于点,过原点与平行的直线与椭圆相交于两点,问是否存在常数,使恒成立?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 满足约束条件,则的最大值为_______

【答案】4

【解析】,画出可行域如下图所示,由图可知,目标函数在点处取得最大值为.

[点睛]本小题主要考查线性规划的基本问题,考查了指数的运算. 画二元一次不等式表示的平面区域的基本步骤:①画出直线(有等号画实线,无等号画虚线);②当时,取原点作为特殊点,判断原点所在的平面区域;当时,另取一特殊点判断;③确定要画不等式所表示的平面区域.

型】填空
束】
14

【题目】已知数列的前项和公式为,若,则数列的前项和__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

【答案】(1);.

(2).

【解析】试题分析】(I)利用圆心和半径,写出圆的参数方程,将圆的极坐标方程展开后化简得直角坐标方程.(II)求得两点的坐标, 设点,代入向量,利用三角函数的值域来求得取值范围.

试题解析】

(Ⅰ)圆的参数方程为为参数).

直线的直角坐标方程为.

(Ⅱ)由直线的方程可得点,点.

设点,则 .

.

由(Ⅰ)知,则 .

因为,所以.

型】解答
束】
23

【题目】选修4-5:不等式选讲

已知函数 .

(Ⅰ)若对于任意 都满足,求的值;

(Ⅱ)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案