精英家教网 > 高中数学 > 题目详情
8.如图所示,两个非共线向量$\overrightarrow{OA}$、$\overrightarrow{OB}$的夹角为θ,N为OB中点,M为OA上靠近A的三等分点,点C在直线MN上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x、y∈R),则x2+y2的最小值为(  )
A.$\frac{4}{25}$B.$\frac{2}{5}$C.$\frac{4}{9}$D.$\frac{2}{3}$

分析 根据向量的加法及向量的共线定理求得x=$\frac{2}{3}$λ,y=$\frac{1}{2}$μ=$\frac{1}{2}$(1-λ),0<λ<1,则x2+y2=($\frac{2}{3}$λ)2+$\frac{1}{4}$(1-λ)2=$\frac{25}{36}$λ2-$\frac{λ}{2}$+$\frac{1}{4}$,0<λ<1,利用二次函数的性质,即可求得x2+y2的最小值.

解答 解:因为点C、M、N共线,则$\overrightarrow{OC}$=λ$\overrightarrow{OM}$+μ$\overrightarrow{ON}$=$\frac{2}{3}$λ$\overrightarrow{OA}$+$\frac{1}{2}$μ$\overrightarrow{OB}$,λ+μ=1,
由$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,
x=$\frac{2}{3}$λ,y=$\frac{1}{2}$μ=$\frac{1}{2}$(1-λ),0<λ<1
x2+y2=($\frac{2}{3}$λ)2+$\frac{1}{4}$(1-λ)2=$\frac{25}{36}$λ2-$\frac{λ}{2}$+$\frac{1}{4}$,0<λ<1
设g(λ)=$\frac{25}{36}$λ2-$\frac{λ}{2}$+$\frac{1}{4}$,0<λ<1,
由二次函数的性质可知:当λ=$\frac{9}{25}$时,g(λ)取最小值,
最小值为g($\frac{9}{25}$)=$\frac{4}{25}$,
∴则x2+y2的最小值为$\frac{4}{25}$,
故选A.

点评 本题考查向量的共线定理,向量加法的应用,二次函数的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若椭圆$\frac{x^2}{4}+\frac{y^2}{4+k}=1\;(k>0)$的两焦点和两顶点构成一个正方形,则k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若某程序框图如图所示,则运行结果为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin(ωx+$\frac{π}{6}$),其中常数ω>0;
(1)若y=f(x)在[0,1]内至少存在10个最大值,求ω的最小值;
(2)令ω=1,将函数y=f(x)的图象上的所有点的横坐标都缩小为原来的$\frac{1}{2}$,再向左平移$\frac{π}{12}$个单位,得到函数y=g(x)的图象,若g(x)=-1在区间[m,n](m,n∈R且m<n)内至少有20个解,在所有满足上述条件的[m,n]中,求n-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-x2-x.
(1)求函数f(x)的最大值;
(2)若函数g(x)=af(x)+ax2-3(a∈R)的图象在点(2,g(2))处的切线与直线x-y=3平行,对于任意的t∈[1,2],函数$h(x)={x^3}+{x^2}[{g^'}(x)+\frac{m}{2}]$在区间(t,4)上总不是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{{3}^{x}(x≤0)}\\{|lo{g}_{2}x|(x>0)}\end{array}\right.$,则方程f(f(x))=1的实数根的个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等比数列{an}的公比是q,首项a1<0,前n项和为Sn,设a1,a4,a3-a1成等差数列,若Sk<5Sk-4,则正整数k的最大值是(  )
A.4B.5C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点P(1,2)作直线m,使直线l与点M(2,3)和点N(4,9)距离相等,则直线m的方程为3x-y-1=0或2x-y=0..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正数a,b满足a2+ab-3=0,则4a+b的最小值为6.

查看答案和解析>>

同步练习册答案