精英家教网 > 高中数学 > 题目详情
在R上定义运算a?b=a(1-b).若不等式(x+y)?(x-y)<1对于实数x恒成立,则实数y的取值范围是(  )
A、(-2,0)
B、(-1,1)
C、(-
1
2
3
2
)
D、(-
3
2
1
2
)
考点:进行简单的合情推理,函数恒成立问题
专题:新定义,不等式的解法及应用
分析:根据定义,化简不等式,然后解不等式即可得到结论.
解答: 解:∵a?b=a(1-b),
∴不等式(x+y)?(x-y)<1等价为(x+y)[1-(x-y)]<1,
即x2-x+1-y-y2>0对实数x恒成立,
则对应判别式△=1-4(1-y-y2)<0,
即4y2+4y-3<0,
解得-
3
2
<y<
1
2

即实数y的取值范围是(-
3
2
1
2
)

故选:D.
点评:本题主要考查不等式的解法,利用不等式和二次函数的判别式之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-4x-1.
(1)当a=2时,求函数f(x)的零点;
(2)当a=2且x∈(0,1)时,f(1-m)-f(2m-1)<0恒成立,求m的取值范围;
(3)若a=0,设g(x)=
b
x
(b≠0)
,且函数h(x)=g(x)-f(x)是区间(1,3)上的单调函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(2,3)与y=x2-2x+3相切的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对?a、b∈R,运算“⊕”、“?”定义为:a⊕b=
a(a<b)
b(a≥b)
,a?b=
a(a≥b)
b(a<b)
,则下列各式其中不恒成立的是(  )
(1)a?b+a⊕b=a+b
(2)a?b-a⊕b=a-b
(3)[a?b]•[a⊕b]=a•b
(4)[a?b]÷[a⊕b]=a÷b.
A、(1)(3)
B、(2)(4)
C、(1)(2)(3)
D、(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前3项分别为4、6、8,则数列{an}的第4项为(  )
A、7B、8C、10D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(2x-
π
6
)的最小正周期是(  )
A、4π
B、2π
C、π
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,a5=5,S5=15,则数列{
1
anan+1
}
的前99和为(  )
A、
99
100
B、
98
100
C、
98
99
D、
100
99

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2cos2x-1),
b
=(
3
sin2x,1),函数f(x)=
a
b

(1)求f(x)单调递减区间;
(2)f(x)向右平移
π
6
个长度单位,再向下平移
1
2
个长度单位,得到g(x)的图象,求g(x)在[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

一种产品的年产量第一年为a件,第二年比第一年增长p1%,第三年比第二年增长p2%,且p1>0,p2>0,p1+p2=2p,若这种产品的产量在这两年中的年平均增长率为x%,试比较p与x的大小.

查看答案和解析>>

同步练习册答案