精英家教网 > 高中数学 > 题目详情
对?a、b∈R,运算“⊕”、“?”定义为:a⊕b=
a(a<b)
b(a≥b)
,a?b=
a(a≥b)
b(a<b)
,则下列各式其中不恒成立的是(  )
(1)a?b+a⊕b=a+b
(2)a?b-a⊕b=a-b
(3)[a?b]•[a⊕b]=a•b
(4)[a?b]÷[a⊕b]=a÷b.
A、(1)(3)
B、(2)(4)
C、(1)(2)(3)
D、(1)(2)(3)(4)
考点:函数恒成立问题
专题:新定义
分析:根据运算分别讨论a≥b或a<b时结论是否成立即可.
解答: 解:根据定义,若a≥b,则a?b=a,a⊕b=b,此时(1)a?b+a⊕b=a+b (2)a?b-a⊕b=a-b  (3)[a?b]•[a⊕b]=a•b  (4)[a?b]÷[a⊕b]=a÷b.都成立.
若a<b时,a?b=b,a⊕b=a,
(1)a?b+a⊕b=b+a=a+b成立.
(2)此时a?b-a⊕b=b-a∴此时(2)不成立.
(3)[a?b]•[a⊕b]=b•a=a•b,此时(3)成立.
(4)若a<b时,a?b=b,a⊕b=a,此时[a?b]÷[a⊕b]=b÷a,∴(4)不一定成立.
故选:B.
点评:本题主要新定义,根据a,b的大小关系进行讨论即可,本题的实质是考查加法和乘法满足交换律,减法和除法不满足交换律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式|x-a|<b的解为-1<x<2,求2a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:对于任意的x∈R,都有f(x+2)=f(x-4)成立,且当x∈[-2,4)时,f(x)=2x+1,则f(2013)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的序号为
 
(把你认为正确的都写出来)
①y=
1
2
sin2x的周期为π,最大值为
1
2

②若x是第一象限的角,则y=sinx是增函数;
③在△ABC中若sinA=sinB则A=B;
④α、β∈(0,
π
2
)且cosα<sinβ,则α+β
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x-sinx在x∈[0,2π]上的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1+a7=26,a3+a9=18,则数列{an}的前9项和为(  )
A、66B、99
C、144D、297

查看答案和解析>>

科目:高中数学 来源: 题型:

在R上定义运算a?b=a(1-b).若不等式(x+y)?(x-y)<1对于实数x恒成立,则实数y的取值范围是(  )
A、(-2,0)
B、(-1,1)
C、(-
1
2
3
2
)
D、(-
3
2
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是A、B、C的对边,若a,b,c成等比数列,且c=2a,则cosB=(  )
A、
1
4
B、
2
4
C、
3
4
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2tanA=3tanB,求证tan(A-B)=
sin2B
5-cos2B

查看答案和解析>>

同步练习册答案