精英家教网 > 高中数学 > 题目详情
6.关于x的不等式$\frac{7x-2}{x+4}$≥x的解集为(-∞,-4)∪[1,2].

分析 不等式$\frac{7x-2}{x+4}$≥x等价于$\frac{(x-2)(x-1)}{x+4}$≤0,即$\left\{\begin{array}{l}{(x-2)(x-1)≥0}\\{x+4<0}\end{array}\right.$或$\left\{\begin{array}{l}{(x-2)(x-1)≤0}\\{x+4>0}\end{array}\right.$,解得即可.

解答 解:不等式$\frac{7x-2}{x+4}$≥x等价于$\frac{7x-2}{x+4}$-x≥0,即$\frac{{x}^{2}-3x+2}{x+4}$≤0,即$\frac{(x-2)(x-1)}{x+4}$≤0,
即$\left\{\begin{array}{l}{(x-2)(x-1)≥0}\\{x+4<0}\end{array}\right.$或$\left\{\begin{array}{l}{(x-2)(x-1)≤0}\\{x+4>0}\end{array}\right.$,
解得x<-4或1≤x≤2,
故不等式的解集为(-∞,-4)∪[1,2],
故答案为:(-∞,-4)∪[1,2]

点评 本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=3x-($\frac{1}{2}$)x的零点存在区间为(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的前n项和为Sn,且a3=5,S4=16.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=3${\;}^{{a}_{n}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的$\frac{1}{4}$,则该双曲线的离心率为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\frac{\sqrt{5}}{2}$,则C的渐近线方程为(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的公差d=1,记{an}的前n项和为Sn,且满足S3+S5=S6
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={2^{a_n}}$,求使得bk+bk+1+bk+2+…+b2k-1=240的正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线x-$\sqrt{3}$y+2=0过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,且与双曲线的一条渐近线垂直,则双曲线的实轴长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线y=1-x与双曲线ax2+by2=1(a>0,b<0)的渐近线交于A,B两点,且过原点和线段AB中点的直线的斜率为$-\frac{{\sqrt{3}}}{2}$,则$\frac{a}{b}$的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{{2\sqrt{3}}}{3}$C.$-\frac{{9\sqrt{3}}}{2}$D.$-\frac{{2\sqrt{3}}}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若全集U=R,集合A={x|1<2x<4},B={x|x-1>0},则A∩(∁UB)=(  )
A.{x|0<x≤1}B.{x|1<x<2}C.{x|0<x<1}D.{x|1≤x<2}

查看答案和解析>>

同步练习册答案