精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2x+4,g(x)=|x-1-a|+|x-2|;
(1)求函数f(x)在区间x∈[-1,m](m>-1)上的值域;
(2)若对于任意的实数x,不等式f(x)-g(x)≥0恒成立,求实数a的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(1)由 函数f(x)=(x-1)2+3,x∈[-1,m],利用二次函数的性质,分类讨论求得函数的值域.
(2)不等式f(x)≥g(x),即 x2-2x+4-|x-2|≥|x-1-a|,再分x≥2和x<2两种情况,分别求得a的范围,综合可得结论.
解答: 解:(1)∵函数f(x)=x2-2x+4=(x-1)2+3,x∈[-1,m],若-1<m<1,则f(x)∈[m2-2m+4,7];
若1≤m<3,f(x)∈[3,7];若m≥3,f(x)∈[3,m2-2m+4].
(2)∵f(x)≥g(x),即 x2-2x+4-|x-2|≥|x-1-a|
(i)若x≥2,即x2-2x+4-(x-2)≥|x-1-a|恒成立,
即x2-3x+6≥|x-1-a|,即-x2+3x-6≤x-1-a≤x2-3x+6,
x2-2x+5-a≥0
x2-4x+7+a≥0
5-a≥0
3+a≥0
,求得-3≤a≤5.
(ii)若x<2,不等式即 x2-2x+4-(2-x)≥|x-1-a|,可得x2-x+2≥|x-1-a|,
即-x2+x-2≤x-1-a≤x2-x+2,
x2+1-a≥0
x2-2x+3+a≥0
1-a≥0
2+a≥0
,⇒-2≤a≤1.
综上,
-3≤a≤5
-2≤a≤1
,故有-2≤a≤1.
点评:本题主要考查二次函数的性质,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y=-
1
2
x2的焦点坐标是(  )
A、(0,-
1
2
B、(-
1
2
,0)
C、(0,-
1
8
D、(-
1
8
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(ωx+
π
3
)(ω>0)的最小正周期为π.
(1)求ω值;
(2)若函数g(x)=f(x)(
x
2
+
π
12
),α,β∈(0,π),且g(α)=1,g(β)=
3
2
4
,求g(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,且过点A(1,
3
2
).
(1)求椭圆C的方程;
(2)若点B在椭圆上,点D在y轴上,且
BD
=2
DA
,求直线AB方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x2-12x+5,当f(x)的定义域为下列各区间时,求函数的最大值和最小值.
(1)[0,3];
(2)[-1,1];
(3)[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

某射击手每次命中目标的概率为
2
3
,求X的概率分布和数学期望.
(1)连续射击3次,击中目标的次数为X;
(2)只有3发子弹,击中目标或子弹打完就停止射击,耗用子弹数X.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,
3
)和椭圆E:
x2
16
+
y2
12
=1,F是椭圆左焦点,一动点M在椭圆上移动,求|AM|+|FM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某省实验中学共有特级教师10名,其中男性6名,女性4名,现在要从中抽调4名特级教师担任青年教师培训班的指导教师,由于工作需要,其中男教师甲和女教师乙不能同时被抽调.
(1)求抽调的4名教师中含有女教师丙,且4名教师中恰有2名男教师、2名女教师的概率;
(2)求抽调的4名教师中女教师不少于2名的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.
(Ⅰ)求证:A1B∥平面AEC1
(Ⅱ)求点A1到平面AEC1的距离.

查看答案和解析>>

同步练习册答案