精英家教网 > 高中数学 > 题目详情
已知f(x)=3x2-12x+5,当f(x)的定义域为下列各区间时,求函数的最大值和最小值.
(1)[0,3];
(2)[-1,1];
(3)[3,+∞).
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:根据二次函数的图象和性质,即可得到结论.
解答: 解:f(x)=3x2-12x+5=3(x-2)2-7,对称轴为x=2,如图:
(1)若x∈[0,3],则当x=2时,函数取得最小值f(2)=-7,当x=0时,函数取得最大值f(0)=5;
(2)若x∈[-1,1],此时函数f(x)单调递减,则当x=1时,函数取得最小值f(1)=-4,
当x=-1时,函数取得最大值f(-1)=20;
(3)若x∈[3,+∞),此时函数f(x)单调递增,则当x=3时,函数取得最小值f(3)=-6,无最大值;
点评:本题主要考查函数最值的求解,根据一元二次函数的图象和性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
b
的夹角为θ,
a
=(2,1),
a
+3
b
=(5,4),则sinθ=(  )
A、
3
10
10
B、
10
10
C、-
3
10
10
D、-
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线y=-2的距离小1.
(1)求动点P的轨迹的方程;
(2)记P的轨迹方程为E,过点F作两条互相垂直的直线分别交曲线E于A,B,C,D四点,设弦AB、CD的中点分别为M,N.求证:直线MN过定点,并求出该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线ax+2y-8=0,4x+3y=10与2x-y=10.
(1)若三条直线相交于一点,求a的值; 
(2)若能围成三角形,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
9x
1+ax2
(a>0)
(1)若直线y=-x+2a为曲线y=f(x)的切线,求实数a的值;
(2)求f(x)在[
1
2
,2]上的最大值;
(3)当a=2时,设x1,x2,x3,…,x2014∈[
1
2
,2]且x1+x2+x3+…+x2014=2014,若不等式f(x1)+f(x2)+f(x3)+…+f(x2014)≤λ恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x+4,g(x)=|x-1-a|+|x-2|;
(1)求函数f(x)在区间x∈[-1,m](m>-1)上的值域;
(2)若对于任意的实数x,不等式f(x)-g(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数
lim
x→0
cosx-1
x
的极限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是一次函数,且满足f(x+1)=2x+7,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-a|.
(Ⅰ)若不等式f(x)≤5的解集为{x|-2≤x≤3},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若存在实数x使f(x)≤m-f(-x)成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案