精英家教网 > 高中数学 > 题目详情
求函数
lim
x→0
cosx-1
x
的极限.
考点:极限及其运算
专题:
分析:因为当x→0时,分子、分母的值都是0,所以采用洛必达法则使计算简便.
解答: 解:原式=
lim
x→0
(cosx-1)′
x′
=
lim
x→0
(-sinx)
=0.
点评:本题考查了对于
0
0
型函数求极限的方法;利用洛必达法则可以解决
0
0
的函数求极限的问题,即对分子分母分别求导,然后求极限.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(
2
,2)
在幂函数f(x)=xα(α>0)的图象上,则f(x)的表达式是(  )
A、f(x)=x2
B、f(x)=x-2
C、f(x)=x
1
2
D、f(x)=x-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c,且a+b+c=0,
(1)试判断a,c及2a+c的符号;
(2)用分析法证明:
b2-ac
a
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x2-12x+5,当f(x)的定义域为下列各区间时,求函数的最大值和最小值.
(1)[0,3];
(2)[-1,1];
(3)[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论关于x的方程|x2-4x+3|-a=x的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,
3
)和椭圆E:
x2
16
+
y2
12
=1,F是椭圆左焦点,一动点M在椭圆上移动,求|AM|+|FM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B、C、D四点共圆,BC和AD的延长线交于点E,点F在AB的延长线上.
(Ⅰ)若EA=2ED,CE=2BC,求
AB
CD
的值;
(Ⅱ)若EF∥CD,求证:线段FA、FE、FB成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,五面体中,四边形ABCD是矩形,DA⊥平面ABEF,且DA=1,AB∥EF,AB=
1
2
EF=2
2
,AF=BE=2,M为EF的中点.
(Ⅰ)求证:AM⊥平面ADF;
(Ⅱ)求二面角A-DF-E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0).
(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;
(2)求函数f(x)的单调区间与极值点.
(3)设函数f(x)的导函数是f′(x),当a=1时求证:对任意x1,x2∈(3,+∞),|f(x1)-f(x2)|≥|f′(x1)-f′(x2)|成立.

查看答案和解析>>

同步练习册答案