精英家教网 > 高中数学 > 题目详情
利用数学归纳法证明
1
n
+
1
n+1
+
1
n+2
+…+
1
2n
<1(n∈N*,且n≥2)时,第一步不等式左端是(  )
A、1+
1
2
B、
1
2
+
1
4
C、1+
1
2
+
1
4
D、
1
2
+
1
3
+
1
4
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:要验证n=2时,不等式左边为
1
2
+
1
3
+
1
4
,即可得出结论.
解答: 解:根据数学归纳法的步骤,首先要验证证明当n取第一个值时命题成立;
结合本题,要验证n=2时,不等式左边为
1
2
+
1
3
+
1
4

故选:D.
点评:本题考查数学归纳法的运用,考查数学归纳法的基本形式,解此类问题时,注意n的取值范围是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,则
sinθ+cos(π-θ)
sin(
π
2
-θ)-sin(π+θ)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,为了测量某湖泊两侧A,B间的距离,某同学首先选定了与A,B不共线的一点C,然后给出了四种测量方案:(△ABC的角A,B,C所对的边分别记为a,b,c)
①测量A,C,b.②测量a,b,C.③测量A,B,a.④测量a,b,B.
则一定能确定A,B间距离的所有方案的序号为(  )
A、①②③B、②③④
C、①③④D、①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,对任意的n∈N*,点(n,Sn)在函数y=
4x-1
3
的图象上,曲线y=4x2+4x在x=n处的切线斜率为k=cn
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=an•cn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数)
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
3
)判断点P与直线l的位置关系
(Ⅱ)设点Q是曲线C上一个动点,求点Q到直线l的距离的最小值与最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

矩形ABCD的长为2,宽为1,将它沿对角线AC翻折,使二面角B-AC-D的大小为
π
3
,则四面体ABCD外接球表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c,不等式f(x)≤0的解集为区间[0,2],且f(x)在区间[0,3]上的最大值为3
(1)求函数f(x)的解析式;
(2)回答下列问题(只需将答案填在横线上,不必写出解题过程)
①已知直线l:x-y+m=0与曲线C:y=f(x)(0≤x≤2).若直线l与曲线段C有且只有一个交点,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知倾斜角为
π
6
,过点P(1,1)的直线l与曲线C:
x=2sinα
y=2+2cosα
(α是参数)相交于A,B两点.
(Ⅰ)写出直线l的参数方程和曲线C的普通方程;
(Ⅱ)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x3+3x2+1,x≤0
eax,x>0
在[-2,2]上的最大值为2,则a的取值范围是(  )
A、(-∞,
ln2
2
]
B、[
ln2
2
,+∞)
C、(-∞,0)
D、[0,
ln2
2
]

查看答案和解析>>

同步练习册答案