精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.
(1)求函数f(x)的表达式;
(2)若sinα+f(α)=,求的值.
(1)f(x)=cosx.(2)-
(1)∵f(x)为偶函数,∴sin(-ωx+φ)=sin(ωx+φ),即2sinωxcosφ=0恒成立,∴cosφ=0,又∵0≤φ≤π,∴φ=.又其图象上相邻对称轴之间的距离为π,∴T=2π,
∴ω=1,∴f(x)=cosx.
(2)∵原式==2sinαcosα,又∵sinα+cosα=,∴1+2sinαcosα=,即2sinαcosα=-,故原式=-
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数,则的单调减区间为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=sin(πx+)(>0)的部分图象如图所示,设P是图像的最高点,A,B是图像与x轴的交点,记∠APB=θ,则sin2θ的值是(      )
A.B.C.-D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)=asinx+bcos2x,其中a,b∈R,ab≠0.若f(x)≤对一切x∈R恒成立,则
①f=0;
②︱f︱<︱f︱;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+,kπ+](k∈Z);
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交.
以上结论正确的是    (写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=sin(2x-)在区间[0,]上的最小值为(  )
A.-1B.-C.D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.
(1)求ω的最小正周期;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-2sin2x+2sinxcosx+1.
(1)求f(x)的最小正周期及对称中心;
(2)若x∈,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2·sincos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将函数f(x)=sin(2xθ) 的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则φ的值可以是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案