精英家教网 > 高中数学 > 题目详情
9.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1的两个焦点分别为F1,F2,以线段F1F2为直径的圆与双曲线渐近线一个交点为(4,3),则该双曲线的实轴长为(  )
A.6B.8C.4D.10

分析 根据题意,点(4,3)到原点的距离等于半焦距,可得a2+b2=25.由点(4,3)在双曲线的渐近线上,得到$\frac{a}{b}$=$\frac{3}{4}$,两式联解得出a=3,b=4,即可得到所求双曲线的方程.

解答 解:∵双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)焦点在y轴上,下、上焦点分别为F1,F2
∴以|F1F2|为直径的圆的方程为x2+y2=c2,a
∵以|F1F2|为直径的圆与双曲线渐近线的一个交点为(4,3),
∴$\left\{\begin{array}{l}{16+9={c}^{2}}\\{4×\frac{a}{b}=3}\end{array}\right.$,解得a=3,b=4,
∴双曲线的方程为$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{16}=1$.
双曲线的实轴长2a=6,
故选:A.

点评 本题考查双曲线的简单几何性质,考查双曲线的渐近线方程的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知向量,$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{b}$,则m=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x>0,y>0且x+y=xy,则x+y的取值范围是(  )
A.(0,1]B.[2,+∞)C.(0,4]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=x-$\frac{1}{x}$的图象关于(  )
A.y轴对称B.直线y=x对称C.坐标原点对称D.直线y=-x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=${log_{\frac{1}{2}}}({x^2}$-ax+a)在区间[2,+∞)上是减函数,则实数a的取值范围是{a|a<4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过两直线l1:2x-y+7=0和l2:y=1-x的交点和原点的直线方程为(  )
A.3x+2y=0B.3x-2y=0C.2x+3y=0D.2x-3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.y=x2+1B.y=x3-2xC.y=2x+1D.y=2x4+3x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=\left\{\begin{array}{l}{e^{x+3}},x<0\\ \sqrt{-{x^2}+2x},0≤x≤2\end{array}\right.$若g(x)=f(x)-kx-2k恰有两个两点,则实数k的取值范围为$({e^2},\frac{e^3}{2})∪[0,\frac{{\sqrt{2}}}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在“双11”促销活动中,某商场对11月11日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为14万元,则9时到11时的销售额为(  )
A.3万元B.6万元C.8万元D.10万元

查看答案和解析>>

同步练习册答案