一块石材表示的几何体的三视图如图12所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )
![]()
图12
A.1 B.2 C.3 D.4
科目:高中数学 来源: 题型:
如图16所示,四棱柱ABCD A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.
(1)证明:O1O⊥底面ABCD;
(2)若∠CBA=60°,求二面角C1OB1D的余弦值.
![]()
图16
查看答案和解析>>
科目:高中数学 来源: 题型:
如图13所示,四棱锥PABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=
,M为BC上一点,且BM=
,MP⊥AP.
(1)求PO的长;
(2)求二面角APMC的正弦值.
![]()
图13
查看答案和解析>>
科目:高中数学 来源: 题型:
如图13,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角DAEC为60°,AP=1,AD=
,求三棱锥EACD的体积.
![]()
图13
查看答案和解析>>
科目:高中数学 来源: 题型:
如图15所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.
(1)求证:EF⊥BC;
(2)求二面角EBFC的正弦值.
![]()
图15
查看答案和解析>>
科目:高中数学 来源: 题型:
如图J112①所示,四边形ABCD为等腰梯形,AE⊥DC,AB=AE=
DC,F为EC的中点.现将△DAE沿AE翻折到△PAE的位置,如图J112②所示,且平面PAE⊥平面ABCE.
(1)求证:平面PAF⊥平面PBE;
(2)求三棱锥APBC与三棱锥EBPF的体积之比.
![]()
图J112
查看答案和解析>>
科目:高中数学 来源: 题型:
.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
![]()
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为X,求X的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com