精英家教网 > 高中数学 > 题目详情
8.如图,已知在△ABC中,AE,AD分别为其角平分线和中线,△ADE的外接圆为⊙O,⊙O与AB,AC分别交于M,N,求证:
(Ⅰ)$\frac{AB}{AC}=\frac{BE}{EC}$;
(Ⅱ)BM=CN.

分析 (Ⅰ)过C作CF∥AB,CF与AE的延长线交于F,∠BAE=∠CAE,∠F=∠CAE,AC=CF.可得△ABE∽△FCE,$\frac{AB}{AC}=\frac{BE}{EC}$;
(Ⅱ)由割线定理可得BM•BA=BD•BE,CN•CA=CE•CD,由BD=CD,可知$\frac{BM\;•\;BA}{CN\;•\;CA}=\frac{BD\;•\;BE}{CE\;•\;CD}=\frac{BE}{CE}$,由(Ⅰ)知$\frac{AB}{AC}=\frac{BE}{EC}$,化简易得结论.

解答 解:(Ⅰ)证明:过C作CF∥AB,CF与AE的延长线交于F,
∴∠F=∠BAF.
∵AE为△ABC的角平分线,
∴∠BAE=∠CAE,
∴∠F=∠CAE,
∴AC=CF.
∵△ABE∽△FCE,
∴$\frac{AB}{CF}=\frac{BE}{EC}$,
∴$\frac{AB}{AC}=\frac{BE}{EC}$.…(5分)
(Ⅱ)由割线定理可得BM•BA=BD•BE,

∵BD=CD,
∴$\frac{BM\;•\;BA}{CN\;•\;CA}=\frac{BD\;•\;BE}{CE\;•\;CD}=\frac{BE}{CE}$,
由(Ⅰ)知$\frac{AB}{AC}=\frac{BE}{EC}$,
∴$\frac{BE}{CE}=\frac{BM\;•\;BA}{CN\;•\;CA}=\frac{BM}{CN}\;•\;\frac{BA}{CA}=\frac{BM}{CN}\;•\;\frac{BE}{EC}$,
∴$\frac{BM}{CN}=1$,
即BM=CN.…(10分)

点评 本题主要考查平面几何证明,考查了三角形的相似、直线与圆相切的性质,割线定理的应用,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知复数z满足z(1-i)=3+i,则z=(  )
A.1+2iB.-1+2iC.1-2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一小袋中有3只红色、3只白色的乒乓球(其体积、质地完成相同),从袋中随机摸出3个球,
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个红球1个白球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=-(x-2)2+1,函数$g(x)=2sin(\frac{π}{6}x)sin(\frac{π}{6}x+\frac{π}{3})+a(a∈R)$,若存在x1,x2∈[1,4],使得f(x1)=g(x2)成立,则实数a的取值范围是[-$\frac{9}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点F是抛物线C:x2=2py(p>0)的焦点,点P(3,y0)(y0>1)是抛物线C上一点,且$|{PF}|=\frac{13}{4}$,⊙Q的方程为x2+(y-3)2=6,过点F作直线l,与抛物线C和⊙Q依次交于M,A,B,N.(如图所示)
(1)求抛物线C的方程;
(2)求(|MB|+|NA|)•|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,在其定义域内既是增函数又是奇函数的是(  )
A.$y=-\frac{1}{x}$B.y=3-x-3xC.$y=ln({x+\sqrt{1+{x^2}}})$D.$y=\frac{{{3^x}+1}}{{{3^x}-1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1:x+ay-2a-2=0,l2:ax+y-1-a=0.
(1)若l1∥l2,试求a的值;
(2)若l1⊥l2,试求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xe1-x,g(x)=(2-a)x-2lnx+a-2.
(1)求函数g(x)的单调区间;
(2)若对于?x0∈(0,e],在区间(0,e]上总存在两个不同实数xi(i=1,2),使得f(x0)=g(xi),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x}{ln(1+x)}$
(1)当x>0时,证明:f(x)<$\frac{1}{2}$x+1;
(2)当x>-1,且x≠0时,不等式(1+kx)f(x)>1+x成立,求实数k的值.

查看答案和解析>>

同步练习册答案