精英家教网 > 高中数学 > 题目详情
3.如图,圆O为四边形ABCD的外接圆,过B、D两点的切线交于点E,AE交圆O于点C.
(1)证明:AB•CD=BC•AD;
(2)延长DC交BE于F,若EF=FB,证明:AD∥BE.

分析 (1)利用三角形的相似,结合切线长相等,即可证明:AB•CD=BC•AD;
(2)利用切割线定理,结合BF=EF,证明出△EFC∽△DFE,进而证明∠EFC=∠DAC,即可得出结论.

解答 证明:(1)∵过B、D两点的切线交于点E,
∴EB=ED,∠EBC=∠EAB,∠EDC=∠EAD
∵∠BEA=∠CEB,∠CED=∠DEA,
∴△EBC∽△EAB,△EDC∽△EAD,
∴$\frac{AB}{BC}=\frac{EA}{EB}$,$\frac{AD}{CD}=\frac{EA}{ED}$,
∴$\frac{AB}{BC}=\frac{AD}{CD}$,
∴AB•CD=BC•AD;
(2)∵BF2=FC•FD,BF=EF,
∴EF2=FC•FD,
∴$\frac{EF}{FC}=\frac{FD}{EF}$,
∵∠EFC=∠DFE,
∴△EFC∽△DFE,
∴∠FEC=∠FDE,
∵∠FDE=∠EAD,
∴∠EFC=∠DAC,
∴AD∥BE.

点评 本题考查圆的切线的性质,考查三角形相似的证明与性质的运用,证明三角形相似是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求抛物线$\left\{\begin{array}{l}{x=2t}\\{y=2{t}^{2}+1}\end{array}\right.$(t为参数)的准线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设i是虚数单位,若复数a+$\frac{1+i}{1-i}$(a∈R)是纯虚数,则a=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为($\frac{π}{4}$,0).将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移$\frac{π}{2}$个单位长度后得到函数g(x)的图象.
(1)求函数f(x)与g(x)的解析式;
(2)定义:当函数取得最值时,函数图象上对应的点称为函数的最值点,如果函数y=F(x)=$\sqrt{3}sin\frac{πx}{k}$的图象上至少有一个最大值点和一个最小值点在圆x2+y2=k2(k>0)的内部或圆周上,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆O与直线l相切于点A,点P,Q同时从A点出发,P沿着直线l向右、Q沿着圆周按逆时针以相同的速度运动,当Q运动到点A时,点P也停止运动,连接OQ,OP(如图),则阴影部分面积S1,S2的大小关系是(  )
A.S1=S2B.S1≤S2
C.S1≥S2D.先S1<S2,再S1=S2,最后S1>S2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.实数$\frac{a+i}{2-i}$(a为实数)的共轭复数为(  )
A.1B.-5C.-1D.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=sin(ωx+φ)(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+2016π)成立,则ω的最小值为$\frac{1}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知P为△ABC所在平面上的一点,且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+2y$\overrightarrow{AC}$,其中x,y∈R为实数,设点M(x,y),点N(1,1),当点P落在△ABC的内部,|MN|的取值范围是($\frac{2\sqrt{5}}{5}$,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{n}^{2}+1}$(n∈N*),则a2等于(  )
A.1+$\frac{1}{2}$B.$\frac{1}{5}$C.1$+\frac{1}{2}$$+\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$D.非以上答案

查看答案和解析>>

同步练习册答案