精英家教网 > 高中数学 > 题目详情
2.如图,矩形OABC的四个顶点坐标依次为O(0,0),A($\frac{π}{2}$,0),B($\frac{π}{2}$,1),C(0,1),记线段OC,CB以及y=sinx(0$≤x≤\frac{π}{2}$)的图象围成的区域(图中阴影部分)为Ω,若向矩形OABC内任意投一点M,则点M落在区域Ω内的概率为(  )
A.$\frac{2}{π}$B.1-$\frac{1}{π}$C.1-$\frac{2}{π}$D.$\frac{π}{2}-1$

分析 利用积分求出阴影部分的面积,结合几何概型的概率公式,即可得到结论

解答 解:阴影部分的面积是:${∫}_{0}^{\frac{π}{2}}(1-sinx)dx$=$\frac{π}{2}-1$,
矩形的面积是:$\frac{π}{2}×1=\frac{π}{2}$,
∵点M落在区域Ω内的概率:$\frac{\frac{π}{2}-1}{\frac{π}{2}}=1-\frac{2}{π}$,
故选:C.

点评 本题是与面积有关的几何概率的计算,求解需要分别计算矩形的面积及阴影部分的面积,考查了利用积分计算不规则图象的面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-ax+$\frac{b}{x}$(a,b∈R),且对任意x>0,都有$f(x)+f(\frac{1}{x})=0$.
(1)求a,b的关系式;
(2)若f(x)存在两个极值点x1,x2,且x1<x2,求出a的取值范围并证明$f(\frac{a^2}{2})>0$;
(3)在(2)的条件下,判断y=f(x)零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线$\frac{x^2}{4}-\frac{y^2}{12}$=1的两条渐近线的夹角的弧度数为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.
(1)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是奇数的概率;
(2)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了ξ次才停止取出卡片,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合M={x|x=sinθ,θ∈R},N={x|$\sqrt{2}$≤2x≤8},则M∩N=(  )
A.$[\frac{1}{2},2]$B.[-1,3]C.$[-1,\frac{1}{2}]$D.$[\frac{1}{2},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2•sinx.给出下列三个命题:
(1)f(x)是定义域为R的奇函数;
(2)f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上单调递增;
(3)对于任意的${x_1},{x_2}∈[{-\frac{π}{2},\frac{π}{2}}]$,都有(x1+x2)[f(x1)+f(x2)]≥0.
其中真命题的序号是(  )
A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若在区间[1,2]上存在实数x使2x(2x+a)<1成立,则a的取值范围是(-∞,-$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,“sinA=1”是“△ABC是直角三角形”的(  )
A.充分不必要条件B.必要不充分条件
C.必要充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的通项公式an=$\frac{1}{n(n+2)}$,则前n项和Sn=$\frac{3}{4}-\frac{1}{2n+2}-\frac{1}{2n+4}$.

查看答案和解析>>

同步练习册答案