精英家教网 > 高中数学 > 题目详情
15.“m=3”是“椭圆$\frac{x^2}{m}+\frac{y^2}{4}=1$的焦距为2”的充分不必要条件.(填“充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件”)

分析 根据充分必要条件的定义结合椭圆的性质求出即可.

解答 解:若m=3,
则c2=4-3=1,c=1,2c=2,
椭圆的焦距是2,是充分条件,
若椭圆的焦距是2,则c=1,
故m-4=1或4-m=1,
解得:m=5或m=3,不是必要条件,
故答案为:充分不必要条件.

点评 本题考查了充分必要条件,裤衩椭圆的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为9.
(1)分别求出m,n的值;
(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差s${\;}_{甲}^{2}$和s${\;}_{乙}^{2}$,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)={log_{\frac{1}{2}}}({x^2}-2ax+3)$,若函数的值域为R,则常数a的取值范围是a$≥\sqrt{3}$或a$≤-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\frac{x}{{{x^2}+4}}$,x∈(-2,2)
(1)判断f(x)的奇偶性并说明理由;
(2)求证:函数f(x)在(-2,2)上是增函数;
(3)若f(2+a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知抛物线若y2=2px过点P(1,2).
(1)求实数p的值;
(2)若直线若l交抛物线于A(x1,y1),B(x2,y2),两点,且y1y2=-4,求证直线l过定点并求出该点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为$\frac{2}{3}$,点M的横坐标为$\frac{9}{2}$.
(1)求椭圆C的标准方程;
(2)若∠FPA为直角,求P点坐标;
(3)设直线PA的斜率为k1,直线MA的斜率为k2,求k1•k2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的前n项和Sn=k+3n,若{an}是等比数列,则k的值是(  )
A.-1B.0
C.1D.以上答案都有不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知两个不相等的非零向量$\overrightarrow{a}$、$\overrightarrow{b}$两组向量$\overrightarrow{{x}_{1}}$、$\overrightarrow{{x}_{2}}$、$\overrightarrow{{x}_{3}}$、$\overrightarrow{{x}_{4}}$、$\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}}$、$\overrightarrow{{y}_{2}}$、$\overrightarrow{{y}_{3}}$、$\overrightarrow{{y}_{4}}$、$\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排列而成.记S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$+$\overrightarrow{{x}_{5}}$•$\overrightarrow{{y}_{5}}$,Smin表示S所有可能取值中的最小值.则下列说法正确的有几个(  )
①S有5个不同的值.    
②若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与$|{\overrightarrow a}$|无关
③若$\overrightarrow a∥\overrightarrow b$则Smin与$|{\overrightarrow b}$|无关.
④若$|{\overrightarrow b}|>4|{\overrightarrow a}$|,则Smin>0
⑤若|$\overrightarrow b|=2|\overrightarrow a|,S{\;}_{min}=8|\overrightarrow a{|^2}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式组$\left\{\begin{array}{l}2x<8\\ 4x-1>x+2\end{array}\right.$的解是{x|1<x<4}.

查看答案和解析>>

同步练习册答案