精英家教网 > 高中数学 > 题目详情
14.函数y=$\left\{\begin{array}{l}{|cosx|,x>1}\\{0,x≤1}\end{array}\right.$,则:f(1)=0;f($\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$;f(π)=1.

分析 利用函数性质直接求解.

解答 解:∵函数y=$\left\{\begin{array}{l}{|cosx|,x>1}\\{0,x≤1}\end{array}\right.$,
∴f(1)=0,
f($\frac{π}{6}$)=|cos$\frac{π}{6}$|=$\frac{\sqrt{3}}{2}$,
f(π)=|cosπ|=1.
故答案为:0;$\frac{\sqrt{3}}{2}$;1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,点A是BCD所在平面外一点,AD=BC,E、F分别是 AB、CD的中点,且EF=$\frac{{\sqrt{2}}}{2}$AD,求异面直线AD和BC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)在(0,+∞)上为增函数,则不等式f(x)>f(8x-16)的解集为(  )
A.(2,$\frac{16}{7}$)B.(-∞,2)C.($\frac{16}{7}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{x+a}{3x-2}$,x∈[1,4],且f(1)=2.
(1)求函数的解析式并证明函数的单调性;
(2)求函数y=f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x2-3x-4=0},B={x|nx+1=0},且A∪B=A,求由实数n所构成的集合N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=$\left\{\begin{array}{l}{2x+3,x<0}\\{2{x}^{2}+1,x≥0}\end{array}\right.$,则f[f(-1)]的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A={x|-1<x<4},B={x|-5<x<$\frac{3}{2}$},C={x|1-2a<x<2a}.若C⊆(A∩B),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.根据如图框图,当输入x为9时,输出的y=(  )
A.1B.2C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=x2-2x,x∈[t,t+1](t∈R),函数f(x)的最小值为g(t)
(1)求g(t)的解析式.
(2)求函数g(t)的值域.

查看答案和解析>>

同步练习册答案