精英家教网 > 高中数学 > 题目详情

若数列{an}为等比数列,且a1=1,q=2,则Tn =+…+的结果可化为(  )

A.1- B.1-

C.(1-) D. (1-)

 

C

【解析】an=2n-1,设bn==()2n-1,

则Tn=b1+b2+…+bn

+()3+…+()2n-1

(1-).

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:解答题

已知lg(3x)+lgy=lg(x+y+1).

(1)求xy的最小值;

(2)求x+y的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-1不等关系与不等式(解析版) 题型:选择题

已知a<0,-1<b<0,那么下列不等式成立的是(  )

A.a>ab>ab2 B.ab2>ab>a

C.ab>a>ab2 D.ab>ab2>a

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-4数列求和(解析版) 题型:填空题

在数列{an}中,a1=2,an+an+1=1(n∈N*),设Sn为数列{an}的前n项和,则S2007-2S2006+S2005的值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-4数列求和(解析版) 题型:填空题

设数列{an}的首项a1=,前n项和为Sn,且满足2an+1+Sn=3(n∈N*),则满足<<的所有n的和为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-3等比数列及其前n项和(解析版) 题型:解答题

已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.

(1)求数列{an}的通项公式;

(2)设Tn=Sn- (n∈N*),求数列{Tn}的最大项的值与最小项的值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-3等比数列及其前n项和(解析版) 题型:选择题

设等比数列{an}的前n项和为Sn,若=3,则=(  )

A.2 B. C. D.3

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:5-1数列的概念与简单表示法(解析版) 题型:解答题

设数列{an}的前n项和Sn满足=3n-2.

(1)求数列{an}的通项公式;

(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所有n∈N*都成立的最小正整数m.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(解析版) 题型:选择题

已知平面向量a,b,|a|=1,|b|=,且|2a+b|=,则向量a与向量a+b的夹角为(  )

A. B. C. D.π

 

查看答案和解析>>

同步练习册答案